• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于ReliefF与互信息结合的特征评价、筛选的家庭负荷类型辨识方法研究
Research on Family Load Type Identification Method Based on Feature Evaluation and Screening Based on ReliefF and Mutual Information
Received:December 23, 2019  Revised:December 23, 2019
DOI:10.19753/j.issn1001-1390.2020.12.007
中文关键词: 家庭负荷  ReliefF  互信息  PSO-SVM
英文关键词: Family  load, ReliefF, mutual  information, PSO-SVM
基金项目:
Author NameAffiliationE-mail
xuebing Shenzhen Power Supply Co, Ltd xuebing@sz.csg.cn 
wenkehuan* Shenzhen Power Supply Co, Ltd 13823365282@139.com 
liweihua Shenzhen Power Supply Co, Ltd liweihua@sz.csg.cn 
zhangzhihan Shenzhen Power Supply Co, Ltd Zhangzhihan@sz.csg.cn 
tangyifeng Shenzhen Shenbao Electronic Meter Co., Ltd yf_tang1106@163.com 
Hits: 2122
Download times: 433
中文摘要:
      家庭负荷识别是实现需求侧精细化管理的关键。针对现有家庭负荷辨识研究中对所提取特征贡献度及相关性分析不足的问题,提出了基于ReliefF与互信息结合的特征评价、筛选的家庭负荷类型辨识方法。本文首先在现有研究基础上提取了16个家庭负荷运行暂、稳态特征,然后对其权重及特征间相关性进行分析,筛选了其中辨识效果最优的特征组合,最后利用基于粒子群优化的支持向量机(Support vector machine based on particle swarm optimization, PSO-SVM )分类模型对实测数据样本进行了辨识。算例结果验证了所提算法的准确性和优越性。
英文摘要:
      Family load identification is the key to achieving demand side refined management. Aiming at the problem of insufficient analysis of the extracted feature contribution and correlation in the existing family load identification research, this paper proposes a family load type identification method based on the combination of ReliefF and mutual information. Based on the existing research, this paper firstly extracts the temporary and steady-state characteristics of 16 family load operations, then analyzes the weight and correlation between them, and selects the feature combination with the best identification effect. Finally, the support vector machine classification model based on particle swarm optimization is used to identify the measured data. The results of the example verify the accuracy and superiority of the proposed algorithm.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd