• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
MPSR-MKSVM电力负荷预测综合优化策略
Comprehensive optimization strategy of power load forecasting based on MPSR-MKSVM
Received:December 30, 2019  Revised:February 17, 2020
DOI:10.19753/j.issn1001-1390.2022.01.010
中文关键词: 相空间重构  支持向量机  滑动窗口  电力负荷  在线预测
英文关键词: phase  space reconstruction,support  vector machine, sliding  window,power  load,online  forecasting
基金项目:
Author NameAffiliationE-mail
XU Hui* State Grid Beijing Electric Power Research Institute smingmingvip@163.com 
CHEN Ping State Grid Beijing Electric Power Research Institute smingmingvip@163.com 
LI Haitao State Grid Beijing Electric Power Research Institute smingmingvip@163.com 
WANG Hangqiu State Grid Beijing Electric Power Research Institute smingmingvip@163.com 
QIN Hao State Grid Beijing Electric Power Research Institute smingmingvip@163.com 
CHEN Shaokuni Beijing Henghua Longxin Data Technology Co,Ltd smingmingvip@163.com 
Hits: 2043
Download times: 346
中文摘要:
      针对电力负荷在线预测问题,结合多变量相空间重构以及多核函数LS-SVM(least squares support vector machine),提出一种基于滑动窗口策略与改进人工鱼群算法(artificial fish swarm algorithm)的短期电力负荷在线预测综合优化方法。首先利用多变量相空间重构还原真实电力系统动力学特性;然后将核函数进行排列组合,从而将组合核函数的构造问题转换为权值系数的优化问题。进一步将延迟时间、嵌入维数、LS-SVM参数以及核函数权值作为整体参数向量,利用混沌自适应人工鱼群算法对训练数据预测精度的适应度函数进行优化,从而得到最优的预测模型参数。最后通过滑动时窗策略将得到的预测模型对短期电力负荷进行在线预测,结果证明了提出方法的有效性。
英文摘要:
      To solve the problem of on-line power load forecasting, a comprehensive optimization method for short-term power load forecasting based on sliding window strategy and improved artificial fish swarm algorithm is proposed, which combines multiple variable phase space reconstruction and least squares support vector machine. Firstly, the multiple variable phase space reconstruction is used to restore the dynamic characteristics of the real power system, and then the kernels are arranged and combined to transform the construction of the combined kernels into the optimization of the weight coefficients. Furthermore, the delay time, embedding dimension, LS-SVM parameters and the weight of the kernel function are taken as the whole parameter vectors, and the adaptive artificial fish swarm algorithm is used to optimize the fitness function of the prediction accuracy of the training data, so as to obtain the optimal parameters of the prediction model. Finally, the short-term power load is predicted on-line by sliding time window strategy, and the results prove the effectiveness of the proposed method.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd