• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
弱电网下LCL换流器谐振的自适应抑制研究
Research on adaptive suppression of LCL converter resonance under weak power grid
Received:January 13, 2020  Revised:January 13, 2020
DOI:10.19753/j.issn1001-1390.2023.02.025
中文关键词: LCL滤波器  并网换流器  弱电网  谐振抑制  RBF神经网络  遗传算法
英文关键词: LCL filter, grid-connected converter, weak power grid, resonance suppression, RBF neural network, genetic algorithm
基金项目:国家自然科学基金项目( 61802162)
Author NameAffiliationE-mail
Li Jun-wei* Qiannan Normal University for Nationalities,Duyun Guizhou 2864976739@qq.com 
Tang Ya-fang School of Electrical Engineering,Guizhou University,Guiyang Guizhou 371861338@qq.com 
Zhang Shang-ran Hebei Instrumentation Engineering Technology Research Center,Chengde Hebei 1958778342@qq.com 
Hits: 1781
Download times: 381
中文摘要:
      LCL型换流器因其体积小,滤波性能好等优点广泛地应用于并网系统。但其自身的谐振问题不可忽略,电容电流反馈有源阻尼是常用的谐振抑制方法。在实际应用中,电网阻抗能够对LCL滤波器谐振产生影响。基于此,提出一种基于遗传算法优化RBF神经网络的自适应谐振抑制方法,该方法依据遗传算法对RBF神经网络进行初始参数的优化,利用RBF神经网络自身的辨识能力对PI控制器的参数进行识别,实时修正PI控制器参数和有源阻尼系数,从而实现LCL型换流器在电网阻抗变化时保持系统稳定。最后分别采用传统无参数优化方法、RBF神经网络优化方法以及所提方法进行实验,通过仿真结果的分析,验证了该方法的有效性。
英文摘要:
      LCL-type converters are widely used in grid-connected systems due to their small size and good filtering performance. However, the resonance suppression problem brought by its own application is also not negligible. The active damping method of capacitive current feedback is a commonly used resonance suppression method. In practical applications, the effect of the grid impedance on the resonance of LCL filter cannot be ignored. On this basis, an adaptive resonance suppression method based on genetic algorithm is proposed to optimize the RBF neural network. The initial parameters of the RBF neural network are optimized according to the genetic algorithm. The parameters of the PI controller are used to identify the parameters of the RBF neural network. Identification, real-time correction of PI control parameters and active damping coefficient, thus achieving the LCL-type converter to maintain system stability when the grid impedance changes. The effectiveness of the proposed method is verified by simulation experiments.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd