• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于单向表示字典学习的电能质量扰动识别方法
Power Quality Disturbance Recognition Method Based on Unidirectional Representation Dictionary Learning
Received:January 19, 2020  Revised:January 19, 2020
DOI:10.19753/j.issn1001-1390.2023.04.019
中文关键词: 电能质量  扰动识别  单向表示  字典学习
英文关键词: power quality  disturbance recognition  unidirectional representation  dictionary learning
基金项目:
Author NameAffiliationE-mail
Yu Huanan Northeast Electric Power University yhn810117@163.com 
Yu Honghao* Northeast Electric Power University yuhonghao9333@163.com 
Hits: 1397
Download times: 308
中文摘要:
      电能质量扰动识别是电能质量数据分析问题中极其重要的一个部分。目前已经实现的电能质量扰动识别方法普遍存在识别速度较慢,识别准确率仍有较大提升空间等问题。本文提出一种计算简单但能有效识别分类的方法,即基于单向表示字典学习的电能质量扰动识别方法。首先对电能质量数据的训练样本进行训练得到与各个类别对应的子字典,提出单向约束以使样本在字典中的表示系数方向可以区分,然后通过计算测试样本的表示系数方向以及大小来区分所属类别。实验结果表明,本文所提方法不但识别准确度高于已有的识别方法,而且计算效率也有较大提升。
英文摘要:
      Power quality disturbance recognition is an extremely important part of power quality data analysis problems.The currently implemented power quality disturbance recognition methods generally suffer from slow recognition speed and low recognition accuracy.This paper proposes a method that is simple to calculate and can effectively recognize classification, that is, a power quality disturbance recognition method based on unidirectional representation dictionary learning.First, train the training samples of the power quality data to obtain sub-dictionaries corresponding to each type, propose a unidirectional constraint so that the direction of the coefficients of the samples in the dictionary can be distinguished.Then distinguish the type by calculating the direction and size of the representation coefficient of the test sample.The experimental results show that the method proposed in this paper not only has higher recognition accuracy than existing recognition methods, but also improves the calculation efficiency.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd