• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于高斯核密度估计的典型负荷曲线形态聚类算法
A typical load curve shape clustering algorithm based on Gaussian kernel
Received:February 11, 2020  Revised:February 22, 2020
DOI:10.19753/j.issn1001-1390.2023.02.006
中文关键词: 典型负荷曲线  核密度估计  现货市场  结算  日分时电量
英文关键词: load profile, kernel density estimation, spot market, settlement, daily power decomposition
基金项目:电力市场化结算电能量数据采集及技术处理研究昆明(2019)070201JS00001
Author NameAffiliationE-mail
yanminghui Kunming power exchange 969627442@qq.com 
xiexiong* Wuhan university tsexiong@qq.com 
liweijie Kunming power exchange 969627442@qq.com 
wudianning Kunming power exchange tsexiong@qq.com 
cuixue wuhan university 969627442@qq.com 
panshucheng wuhan university 969627442@qq.com 
Hits: 1298
Download times: 331
中文摘要:
      在电力现货市场结算过程中,获取市场化用户的实时电量至关重要。文中聚焦现货市场中非分时计量用户的电量分解,设计了一种利用典型负荷曲线获取分时电量的方法和流程。文中选取样本用户,对样本用户计量数据进行预处理后得到完整样本典型负荷曲线。然后,文中提出一种基于核密度估计聚类中心的负荷曲线聚类方法,将kmeans算法原有的均值获取聚类中心升级为高斯核密度估计获取最大概率的聚类中心进行迭代计算,并将聚类中心曲线作为典型负荷曲线对不具备分时计量的用户进行日电量划分,划分至以15 min为颗粒度的电量进行结算,运用云南省样本用户计量数据,采用传统峰平谷比例分解、传统聚类算法以及本文改进聚类算法获取的典型负荷曲线进行电量的实时分解算例分析,结果显示,文章所提的改进Kmeans算法具备更好的分类性能和较好的效率,同时所分解电量具备更高的准确性。
英文摘要:
      In the process of power spot market settlement, it is very important to obtain the real-time power of market users. This paper focuses on the power decomposition of non-time-sharing metering users in the spot market and designs a method and process to obtain time-sharing power using typical load curve. Sample users are selected, and the complete sample typical load curve is obtained after preprocessing the measurement data of sample users. Then, this paper proposes a clustering center based on kernel density estimate the load curve of clustering method, the kmeans algorithm the original average clustering center to get upgraded to a Gaussian kernel density estimation to obtain the maximum probability of iterative calculation, the clustering center and clustering center curve as a typical load curve of users that do not have time-sharing measurement, power division, division to the granularity for 15 min settlement of electricity, using the sample user measurement data of Yunnan province, the traditional peak pinggu scale decomposition, traditional clustering algorithm and the improved clustering algorithm to obtain the typical load curve of power of the real example analysis, the results show that the improved kmeans algorithm proposed in this paper has better classification performance and better efficiency, at the same time decomposition capacity have higher accuracy.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd