• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于监测数据相关性分析的谐波趋势预警方法
Harmonic Trend Warning Method Based on Correlation Analysis of Monitoring Data
Received:February 20, 2020  Revised:March 07, 2020
DOI:10.19753/j.issn1001-1390.2022.05.016
中文关键词: 监测数据  谐波趋势预警  相关性分析  动态时间规整  滑动均值
英文关键词: Monitoring data, Harmonic trend warning, Correlation analysis, Dynamic time warping, Moving average smoothing
基金项目:
Author NameAffiliationE-mail
LUO Hairong Electric Power Research Institute of State Grid Ningxia Electric Power Co. Ltd 13209598368@163.com 
XU Lijuan Electric Power Research Institute of State Grid Ningxia Electric Power Co. Ltd 13209598368@163.com 
Zhang Yi* College of Electrical Engineering and Automation, Fuzhou University zhangyi@fzu.edu.cn 
YAO Wenxu College of Electrical Engineering and Automation, Fuzhou University ywxxxx7@163.com 
Hits: 1084
Download times: 393
中文摘要:
      针对传统谐波监测数据预警方法仅考虑短时或单一时刻的数值大小分布,未关注到长期趋势变化的问题,文章提出了基于谐波监测数据相关性分析的趋势预警方法:在分析了长期运行过程中谐波监测数据随时间变化趋势的周期规律性以及相似性基础上,对比实时监测数据与正常状态数据的变化趋势,若趋势差异大,则预警。首先,使用滑动均值法提取数据整体趋势变化,避免短时波动等干扰对整体趋势分析的影响;随后,根据动态时间规整算法,量化不同时段数据变化规律的差异,并进行异常趋势预警;最后,利用现场实测数据,验证了文章方法的正确性和有效性。
英文摘要:
      Aiming at the problem of the traditional harmonic monitoring data early warning method, which only considering the distribution of data value in a short period or a single moment, rather than paying attention to the change of data trend, this paper proposes a trend warning method based on the correlation analysis of harmonic monitoring data: on the basis of analyzing the periodic regularity and similarity of the trend change of harmonic monitoring data over time during long-term operation, the change trend of real-time monitoring data and normal state data is compared. If the trend difference is large, early warning will be given. Firstly, the moving average smoothing method is used to extract the overall trend change of data to avoid the influence of short-term fluctuations and other interferences on the overall trend analysis. Then, according to the dynamic time structuring algorithm, the difference of data change law in different periods is quantified, and abnormal trend warning is given. Finally, the correctness and effectiveness of the proposed method are verified by monitoring data.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd