• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进遗传算法的变电站巡检机器人路径规划
Route Planning for Substation Patrol Robot Based on Improved Genetic Algorithms
Received:February 21, 2020  Revised:March 08, 2020
DOI:10.19753/j.issn1001-1390.2023.08.024
中文关键词: 变电站巡检机器人  路径规划  改进遗传算法  寻优
英文关键词: substation  patrol robot, path  planning, improved  genetic algorithm, optimization
基金项目:中国南方电网有限责任公司科技项目—基于虚拟现实环境的机器人建模及运动控制研究( ZBKJXM20170086); 国家自然科学基金 基于无源性理论的全方位移动机械手轨迹跟踪自抗扰控制研究(61603270)
Author NameAffiliationE-mail
Ke Qingpai* China Southern Power Grid Research Institute,Smart Grid Research Lab keqp@csg.cn 
Shi Xuntao China Southern Power Grid Research Institute,Smart Grid Research Lab shixt@csg.cn 
Yuan Zhiyong China Southern Power Grid Research Institute,Smart Grid Research Lab yuanzy1@csg.cn 
Lei Jinyong China Southern Power Grid Research Institute,Smart Grid Research Lab leijy@csg.cn 
Liu Yingshu School of Electrical and Information Engineering, Tianjin University, liu_ysh@tju.edu.cn 
Ren Chao School of Electrical and Information Engineering, Tianjin University, renchao@tju.edu.cn 
Hits: 1600
Download times: 287
中文摘要:
      变电站巡检机器人的路径规划是一个复杂的组合优化问题。与经典的TSP问题不同,变电站巡检线路中各坐标之间并不具备完全的连通性,传统的优化方法难以解决此类问题。为此,文中提出一种改进遗传算法用于巡检路径规划,首先采用拓扑图对机器人工作环境进行建模,然后采用特殊的交叉算子、自适应变异算子和淘汰算子,对每一代被淘汰的个体进行逆转变异并将产生的新个体重新加入种群,随迭代次数调整变异概率,从而对连续的规划空间直接进行寻优。仿真结果表明该算法在巡检机器人路径规划中与模拟退火算法,传统遗传算法和基于个体相似度改进的自适应遗传算法( ISAGA)相比,得到的路径平均长度分别缩短了4.9%,8.3%和3.1%,并且具有更好地收敛性和稳定性,在实际的巡检任务中能够起到更好地效果。
英文摘要:
      Path planning of patrol robot in substation is a complex combinatorial optimization problem. Unlike the classical TSP problem, the coordinates of inspection line in substation do not have complete connectivity. Conventional optimization methods are difficult to solve such problems. Therefore, an improved genetic algorithm is proposed for the route planning. Firstly, the working environment of the robot is modeled by using topological graph. Then, the special crossover operator, adaptive mutation operator and elimination operator are used to reverse mutation of the eliminated individuals in each generation, and the new individuals are re-added to the population. The mutation probability is adjusted with the number of iterations, so as to connect with each other. Continuous planning space is directly optimized. The simulation results show that compared with the simulated annealing algorithm, the traditional genetic algorithm and the improved adaptive genetic algorithm based on individual similarity (ISAGA), the average path length of the proposed algorithm is shortened by 4.9%, 8.3% and 3.1% respectively, and it has better convergence and stability, and can play a better role in the actual inspection task.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd