• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于暂态零序电流图像识别的配电网单相接地故障区域定位
Single-phase ground fault area location of distribution network based ontransient zero-sequence current image recognition
Received:February 23, 2020  Revised:March 02, 2020
DOI:10.19753/j.isssn1001-1390.2023.03.005
中文关键词: 单相接地故障  暂态零序电流  图像识别  卷积神经网络  故障区域定位
英文关键词: single-phase  ground fault, transient  zero-sequence  current, image  recognition, convolutional  neural network, fault  area location
基金项目:青年科学基金项目(51807059)
Author NameAffiliationE-mail
XU Yuqin School of Electrical and Electronic Engineering,North China Electric Power University xyq@ncepu.edu.cn 
XU Jiamin* School of Electrical and Electronic Engineering,North China Electric Power University xujiamin@ncepu.edu.cn 
Hits: 1183
Download times: 336
中文摘要:
      为了提高配电网单相接地故障的定位准确率,提出一种基于暂态零序电流图像识别的配电网单相接地故障区域定位方法。首先,通过PSCAD实现故障仿真,构建卷积神经网络(CNN)学习所需图像集。然后,根据单相接地故障的两值性和分化性特征,基于Python编程进行图像预处理,采用VGGNet11网络结构对预处理后的字节形式故障样本进行训练,得到故障区域定位模型,并可视化分析模型分类效果。典型10kV配电网模型数字仿真及现场试验均表明,所提方法能够准确实现故障区域定位,不受系统接地方式、故障电阻和初始相角的影响。可采用暂态录波型故障指示器采集线路暂态零序电流,信号获取方便。
英文摘要:
      In order to improve the positioning accuracy of single-phase grounding faults in distribution network, a single-phase ground fault area location based on transient zero-sequence current image recognition is proposed. First, the fault simulation is realized by PSCAD to construct the image set required for Convolutional Neural Network(CNN) learning. Then, according to the ambiguity and differentiation characteristics of single-phase ground faults, image preprocessing based on Python programming. The pre-processed byte-form fault samples are trained by the VGGNet11 network structure to obtain a fault region localization model, and the classification effect is visually analyzed. Digital simulation and field tests of a typical 10kV distribution network model show that the proposed method can accurately locate the fault area without being affected by the system grounding mode, fault resistance and initial phase angle. The transient oscilloscope type fault indicator can be used to collect the transient zero sequence current of the line, and the signal acquisition is convenient.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd