• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于压缩感知的智能电能表信号压缩
Signal Compression for Smart Meters Based on Compressed Sensing
Received:February 25, 2020  Revised:February 25, 2020
DOI:10.19753/j.issn1001-1390.2002.08.027
中文关键词: 压缩感知  智能电能表  信号处理  功率信号
英文关键词: compressed sensing, smart meter, signal processing, power signal
基金项目:国家电网公司科技项目“电能表检定流水线标准装置的智能运维及运行误差远程监测的关键技术研究”(5216AG190004)
Author NameAffiliationE-mail
Zhang Canhui* State Grid Hunan Electric Power Limited Company zch_hnsg@outlook.com 
Zhao Dan State Grid Hunan Electric Power Limited Company zch_hnsg@outlook.com 
Xie Yuman State Grid Hunan Electric Power Limited Company zch_hnsg@outlook.com 
Xiao Jianhong State Grid Hunan Electric Power Limited Company zch_hnsg@outlook.com 
Liu Xiangbin State Grid Hunan Electric Power Limited Company zch_hnsg@outlook.com 
Hits: 1600
Download times: 405
中文摘要:
      需求响应与功率分解等复杂任务对于高采样率功率信号的精确获取提出了更高的要求。针对这一问题,设计一种基于压缩感知(Compressed Sensing,CS)的智能电能表功率信号压缩方法,以支持智能电能表的窄带宽、低能耗条件下的信号传输。分析了各类负载的特性,提出了对于智能电能表功率信号的经验模型,作为信号压缩的基础。通过实验验证了经验模型的有效性,并得到了适用于压缩感知方法的最优表示矩阵与投影矩阵生成方案,说明了压缩感知方法相比基于小波变换的压缩方法在信号重建效果上的优势。
英文摘要:
      Power signal with high sample rate is more required for complex tasks including demand response and power disaggregation. For this issue, a signal compression method based on compressed sensing (CS) is designed, to support signal transformation under low energy consumption and narrow bandwidth condition in smart meters. On the basis of analysis on characteristics of different types of loads, an empirical model for power signal of smart meters is proposed. Experimental results demonstrate the validity of the empirical model, the best method of generating the representation matrix and projection matrix, and the superiority of compressed sensing based method compared to wavelet transform.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd