• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于多源数据及多维故障诊断空间的快速智能电网故障诊断方案
Fast smart grid fault diagnosis scheme based on multi-source data and multi-dimensional fault diagnosis space
Received:February 28, 2020  Revised:February 28, 2020
DOI:DOI: 10.19753/j.issn1001-1390.2022.10.021
中文关键词: 多源数据  故障编码  概率神经网络  信息畸变  误动  拒动  电网故障诊断
英文关键词: multi-source data, fault coding, probabilistic neural network, information distortion, misoperation, refusal, power grid fault diagnosis
基金项目:
Author NameAffiliationE-mail
Weicongcong Shanghai University of Electric Power 2567669863@qq.com 
Deng Xiangli* Shanghai University of Electric Power 631236110@qq.com 
Jia Shenghao Jiangsu Xingli Construction Group Co., Ltd. supervision consulting branch 2409495363@qq.com 
Fang Liuyuan College of Electrical Engineering,Guizhou University 1592410842@qq.com 
Hits: 1540
Download times: 364
中文摘要:
      针对目前的电网故障诊断算法难以兼顾实时性和全面性,导致其无法满足调度实用化需求的问题,提出一种利用多源数据进行故障诊断的快速智能诊断方案。通过故障编码技术将遥信数据映射到故障诊断空间,形成故障编码集;然后针对仅用开关量数据的缺陷,提出利用广域量测系统(WAMS)中的电气量信息对故障编码进行修正和补充,将带标签的故障编码输入概率神经网络(PNN)进行训练,构造PNN分类模型通过构造故障分析模块对保护和断路器误动、拒动情况进行分析,形成综合智能诊断模型。算例分析表明,该方法正确可行,可满足调度实用化要求。
英文摘要:
      Aiming at the problem that current grid fault diagnosis algorithms are difficult to take into account both real-time and comprehensive performance, which makes it unable to meet the practical requirements of dispatching, a fast and intelligent diagnosis scheme using multi-source data for fault diagnosis is proposed in this paper. The remote coding data is mapped to the fault diagnosis space through fault coding technology to form a fault coding set, for the defect of using only the switch data, the fault code is corrected and added using the electrical quantity information in the wide area measurement system (WAMS). The labeled fault code is then input into a probabilistic neural network (PNN) for training to construct a PNN classification model. The fault analysis module is constructed to analyze the protection and circuit breaker misoperation and refusals to form a comprehensive intelligent diagnostic model. The analysis of examples shows that the proposed method is correct and feasible, which can meet the practical requirements of scheduling.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd