• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于PSO-KELM的风功率预测研究*
Wind power prediction based on particle swarm optimized kernel extreme learning machine
Received:March 16, 2020  Revised:April 14, 2020
DOI:10.19753/j.issn1001-1390.2020.11.004
中文关键词: 风功率预测  粒子群算法  核极限学习机  均方根误差  平均绝对误差  相对标准差
英文关键词: wind  power prediction, particle  swarm optimization (PSO), kernel  extreme learning  machine (KELM), root  mean square  error (RMSE), mean  absolute error (MAE), relative  standard deviation (RSD)
基金项目:国家科学自然基金(51677067)
Author NameAffiliationE-mail
Peng Zhao China Energy Engineering Investment Corporation Ltd,Beijing dq_cpecc@163.com 
Tu Jingjing* China Energy Engineering Investment Corporation Ltd,Beijing shell2005@126.com 
Yang Xiyun North Chian Electric Power University yangxiyun916@sohu.com 
Hits: 1508
Download times: 571
中文摘要:
      风功率预测为电网规划设计提供重要的依据,研究风功率预测方法对确保电网安全稳定运行具有重要意义。针对正则化系数C和核参数λ作为模型参数,对核极限学习机预测模型精度产生影响的问题,提出了运用PSO对核极限学习机进行参数优化的PSO-KELM预测方法。将正则化系数C和核参数λ作为优化对象,利用PSO方法对参数共同优化,建立PSO-KELM风功率预测模型。对3组实测数据进行了实验研究,引入均方根误差、平均绝对误差和相对标准差作为评价指标,结果显示该方法预测误差好于直接应用KELM方法,并进一步将结果与常用的SVM以及PSO-SVM方法进行了比较。结果表明,PSO-KELM方法具有更好的预测精度和稳定性,能够为风电场功率预测以及风电并网安全提供科学有效的参考。
英文摘要:
      Wind power forecasting provides an important basis for power grid planning and design. Studying wind power forecasting methods is of great significance to ensure safe and stable operation of power grids. Aiming at the problem that the regularization coefficient C and the kernel parameter λ are model parameters that affect the accuracy of the kernel extreme learning machine prediction model, a PSO-KELM prediction method using PSO to optimize the parameters of the kernel extreme learning machine is proposed. Taking the regularization coefficient C and the kernel parameter λ as optimization objects, the parameters are jointly optimized by using the PSO method to establish a PSO-KELM wind power prediction model. Experimental research was performed on 3 sets of measured data. Root mean square error, mean absolute error, and relative standard deviation are introduced as evaluation indicators. The prediction error of this method is better than that of direct application of KELM method. The results are further compared with commonly used SVM and PSO-SVM method. The results show that the proposed method has high prediction accuracy and good stability, and it can provide a scientific and effective reference for wind farm power prediction and wind power grid safety.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd