• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于CEEMD-RSVPSO-KELM的用户侧微电网 短期负荷预测
Short-term load forecasting for microgrid based on CEEMD-RSVPSO-KELM model
Received:March 25, 2020  Revised:March 25, 2020
DOI:10.19753/j.issn1001-1390.2020.18.012
中文关键词: 用户侧微电网  短期负荷预测  互补集成经验模态分解  核极限学习机  欧氏距离  自适应变异  粒子群算法
英文关键词: user-side microgrid  short-term load forecasting  complementary ensemble empirical mode decomposition  kernel extreme learning machine  euclidean metric  self-adapting variation  particle swarm optimization
基金项目:国家自然科学基金项目( 61663021, 61763025, 61861025)
Author NameAffiliationE-mail
du han xiao School of Automation and Electrical Engineering, Lanzhou Jiaotong University 2503448451@qq.com 
tang min an* School of Automation and Electrical Engineering, Lanzhou Jiaotong University tangminan@mail.lzjtu.cn 
Hits: 1189
Download times: 422
中文摘要:
      用户侧微电网负荷随机性强,短期负荷的预测精度对微电网的正常运行起着重要作用。提出了一种基于互补集成经验模态分解(CEEMD)和区域划分自适应变异粒子群(RSVPSO)算法优化核极限学习机(KELM)的负荷预测模型。采用互补集成经验模态分解将负荷序列分解为多组平稳的子序列,以减小不同局部信息之间的相互影响。针对粒子群算法易早熟和收敛速度慢的问题,利用区域划分来实现惯性权重和学习因子的自适应调整,提高粒子的全局寻优能力和搜索效率,并结合自适应变异操作避免陷入局部最优,加强核极限学习机预测精度。最后通过案例验证,所提模型的预测准确率约为98.114%,较其他预测模型具有更好的预测效果和实际应用意义。
英文摘要:
      Prediction accuracy of short-term load is critical to the normal operation of the microgrid due to the strong randomness of load. A kernel extreme learning machine (KELM) prediction model based on complementary ensemble empirical mode decomposition (CEEMD) and regional-division self-adapting variation particle swarm optimization (RSVPSO) is proposed. The load sequence is decomposed into several smooth subsequences by using complementary ensemble empirical mode decomposition to reduce the mutual influences among different local information. Aiming at the problem that particle swarm optimization is easy to fall into local optimization and is slow in converge, a inertial weight and learning factor based on regional-division are utilized to improve the global search ability and search efficiency, further, adaptive variation operation is introduced to avoid the population falling into local optimum. The prediction accuracy of kernel extreme learning machine is obviously improved. Finally, the model proposed in this paper can obtain good performance of accuracy about 98.114%, which has better prediction effect and practical application significance than other prediction models.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd