• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于小波变换与BiGRU-NN模型的短期负荷预测方法
Short-term load forecasting method based on wavelet transform and BiGRU-NN model
Received:April 02, 2020  Revised:April 14, 2020
DOI:10.19753/j.issn1001-1390.2023.06.015
中文关键词: 电力系统  短期负荷预测  小波变换  双向门控循环单元  双向门控循环单元-全连接神经网络混合模型
英文关键词: power system, short-term load forecasting, wavelet transform, bidirectional gated recurrent unit, bidirectional gated recurrent unit-fully-connected neural network hybrid model
基金项目:国家自然科学基金面上项目(51877141)
Author NameAffiliationE-mail
Zeng Youjun* College of Electrical Engineering,Sichuan University 1342382572@qq.com 
Xiao Xianyong College of Electrical Engineering,Sichuan University xiaoxianyong@163.com 
Xu Fangwei College of Electrical Engineering,Sichuan University xfwlovely@126.com 
Hits: 1542
Download times: 370
中文摘要:
      为更好地挖掘大量采集数据蕴含的有效信息,提高短期负荷预测精度,文中提出一种基于小波变换与双向门控循环单元(BiGRU)、全连接神经网络(NN)混合模型的短期负荷预测方法。文章利用小波变换将负荷特征数据分解为高频数据以及低频数据,再分别建立高频混合神经网络以及低频混合神经网络模型进行预测。在混合神经网络模型中,将负荷特征数据作为BiGRU-NN网络的输入,利用BiGRU-NN网络学习负荷非线性以及时序性特征,以此进行短期负荷预测。文中以丹麦东部地区的负荷数据作为算例,实验结果表明,该方法与GRU神经网络、DNN神经网络、CNN-LSTM神经网络相比,具有更高的预测精度
英文摘要:
      In order to better mine the effective information contained in a large amount of collected data and improve the accuracy of short-term load forecasting, a short-term load forecasting method based on a hybrid model of wavelet transform and bidirectional gated recurrent unit (BiGRU) and fully-connected neural network (NN) is proposed in this paper. The wavelet transform is used to decompose the load characteristic data into high-frequency data and low-frequency data, and then, a high-frequency mixed neural network and a low-frequency mixed neural network model are built respectively to conduct prediction. In the hybrid neural network model, the load characteristic data is used as the input of the BiGRU-NN network, and the BiGRU-NN network is used to learn the load nonlinearity and time series characteristics to perform short-term load prediction. Taking the load data of Eastern Denmark as an example, the experimental results show that the proposed method has higher prediction accuracy than the GRU neural network, DNN neural network, and CNN-LSTM neural network.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd