• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
一种基于液态空气储能枢纽站的分布式压缩空气储能系统模型预测控制方法*
A new model predictive control method for distributed liquefied air - compressed air energy storage system
Received:April 15, 2020  Revised:April 29, 2020
DOI:10.19753/j.issn1001-1390.2020.20.017
中文关键词: 液态空气储能  压缩空气储能  能源枢纽站  模型预测控制
英文关键词: liquid  air energy  storage, compressed  air energy  storage, energy  hub, model  predictive control.
基金项目:中国科学院重点资助项目
Author NameAffiliationE-mail
Liu Kaicheng China Electric Power Research Institute liukaicheng@epri.sgcc.com.cn 
Zhong Ming China Electric Power Research Institute zhongm@epri.sgcc.com.cn 
Zeng Pingliang* hangzhoudianziUniversity plzeng@hotmail.com 
zhuliangguan hangzhoudainziUniversity 860766024@qq.com 
hunaglinhai hangzhoudianziUniversity 2205337653@qq.com 
Hits: 1288
Download times: 449
中文摘要:
      再电气化是应对环境污染和气候变化的重要发展趋势。终端能源的深度再电气化,如以电代煤,以电代油,交通电气化等,将大幅提高电能在终端能源利用的比例,提高配电网,特别是城市电网的电力负荷水平,为配电网的运行、安全及可靠性带来新的挑战,储能是智能电网的重要组成部分,是提高供电可靠性和安全性的重要措施之一。本文提出一种基于液态空气储能枢纽站(LAES)的分布式压缩空气储能系统(CAES)模型预测控制(MPC)方法。首先,建立基于液态空气储能枢纽站的分布式压缩控制储能配置方法,其次,在此基础上,提出以日前运行成本最小和实时运行偏差最小为目标的双层优化MPC控制模型,满足配电网及液态空气-压缩空气储能系统安全运行条件,最后,以改进IEEE 30节点测试系统为例,验证了文种所提方法的正确性和实用性。
英文摘要:
      Re-electrification is an emerging development trend in dealing with environmental pollution and climate change with re-electrification of final energy consumption, such as electrification of oil, coal, transport, etc. This will greatly increase the share of electricity in the final energy consumption, increasing the demand of distribution networks, especially urban networks, and pose great challenges to the reliability and safe operation of the distribution networks. Energy storage is an effective means to deal with these new challenges, ensuring security and reliability of the system. This paper proposes a new model predictive control (MPC) method for cryonic air energy storage (LAES) and compressed air energy storage (CAES) systems. Firstly, a distributed installation framework for LAES and CAES system based on LAES energy hub is proposed, then, a model predictive control method combined with hierarchical optimization that meet the requirements of network security and LAES and CAES system operations. Finally, the method is tested and validated using the modified IEEE 30 test system.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd