• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于KM算法投切事件匹配的负荷辨识方法
A load identification method for event matching based on KM algorithm
Received:April 17, 2020  Revised:April 17, 2020
DOI:10.19753/j.issn1001-1390.2023.11.009
中文关键词: 非侵入式  负荷匹配  KM算法  图理论  负荷辨识
英文关键词: non-intrusive, load matching, KM algorithm, graph theory, load identification
基金项目:中国南方电网有限责任公司科技项目
Author NameAffiliationE-mail
HU Yue* School of Electrical Engineering and Automation,Wuhan University 2362326780@qq.com 
HU Wenshan School of Electrical Engineering and Automation,Wuhan University wenshan.hu@whu.edu.cn 
WANG Xiaowen Shengdi Electric Power Group Co., Ltd. 565788946@qq.com 
ZHOU Dongguo School of Electrical Engineering and Automation,Wuhan University donguozhou@gmail.com 
Hits: 1216
Download times: 257
中文摘要:
      负荷投切事件是关联负荷分类、辨识的一个重要依据,为了能够准确地实现非侵入式负荷投切过程的辨识,提出一种基于KM算法投切事件匹配的非侵入式负荷辨识方法。该方法采用一种功率曲线拟合逼近的方式进行负荷事件检测,并利用投切稳态特征建立用电设备投入和切除特征的概率分布模型。同时,考虑到负荷投入事件和切除事件数量不对等情况,将负荷事件与数据库负荷进行匹配,并采用加权优化的KM算法寻找最佳解,从而实现负荷投入和切除的正确匹配辨识。在真实的测试场景并结合REDD数据集进行实验,结果表明,文中方法可对负荷投切事件进行有效匹配辨识,为实现能耗细分奠定了基础。
英文摘要:
      Load switching events are important basis for load classification and identification. In order to accurately identify the process of load switching, a non-intrusive load identification method based on KM matching algorithm is proposed in this paper. An approximation method fitting the power curve is used to detect load events, and the probability distribution model of load event signatures is established by using the switching steady-state signatures. Considering that the number of load turning on and off events is not equal, the load events are matched with loads in database, and weighted optimization KM algorithm is used to find the optimal solution, so as to realize the correct load matching. In the test of real scenario and REDD dataset, the results show that the proposed method can effectively match and identify load events, which lays foundation for the subdivision of subsequent energy consumption.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd