• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于用电模式和字典学习的电器负荷分解方法
Decomposition method for appliance load based on power consumption patterns and dictionary learning
Received:May 09, 2020  Revised:June 20, 2020
DOI:10.19753/j.issn1001-1390.2023.06.014
中文关键词: 非侵入式负荷分解  用电模式  字典学习  稀疏表示
英文关键词: non-intrusive load decomposition, power consumption pattern, dictionary learning, sparse representation
基金项目:贵州电网有限责任公司科技项目资助(066600KK52180051)
Author NameAffiliationE-mail
Tan Zhukui Electric Power Research Institute of Guizhou Power Grid Co,Ltd tanzk@163.com 
Xu Weifeng* College of Electric Power, South China University of Technology fengalsk@foxmail.com 
Liu Bin Electric Power Research Institute of Guizhou Power Grid Co,Ltd 1144384158@qq.com 
Hu Houpeng Electric Power Research Institute of Guizhou Power Grid Co,Ltd 409329831@qq.com 
Lan Chaofan College of Electric Power, South China University of Technology cflanscut@163.com 
Ding Chao Electric Power Research Institute of Guizhou Power Grid Co,Ltd 870550642@qq.com 
Hits: 1603
Download times: 253
中文摘要:
      负荷分解是获取电器用电细节、分析用户用电行为的重要手段,有利于加强智能电网的需求侧管理。针对当前非侵入式负荷分解研究缺乏考虑电器用电模式、模型迁移能力弱的问题,提出一种基于用电模式和字典学习的电器负荷分解方法。通过聚类提取电器的典型用电模式,根据待测住宅内电器所含用电模式,执行字典学习算法训练各电器的模式字典,再利用模式字典对总负荷进行稀疏表示以实现负荷分解,测试数据集上的分解结果验证了所提方法的准确性以及在住宅迁移上的性能。
英文摘要:
      Load decomposition is an important means to obtain electrical details of appliances and analyze the power consuming behavior of users, which helps to strengthen demand side management of smart grid. Since the current non-intrusive load decomposition researches lack concern about power consumption patterns of appliances and weak migration ability of these models, a decomposition method for appliance load based on power consumption patterns and dictionary learning is proposed in this paper. Typical consumption patterns of appliance load are extracted by clustering. According to the consumption patterns contained in the appliances from testing house to be measured, dictionary learning algorithm is used to train pattern dictionary of the appliances. Then, sparse representation is applied to total load with pattern dictionary to realize load decomposition. Accuracy of the proposed method and its performance on house migration are verified by decomposition results on test dataset.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd