• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于CEEMDAN和HT的谐波检测新方法
A novel harmonic detection method based on CEEMDAN and HT
Received:June 18, 2020  Revised:July 12, 2020
DOI:10.19753/j.issn1001-1390.2023.06.021
中文关键词: 经验模态分解  希尔伯特-黄变换  自适应噪声完备集合经验模态分解  希尔伯特变换  谐波
英文关键词: empirical mode decomposition, Hilbert-Huang transform, complete ensemble empirical mode decomposition with adaptive noise, Hilbert transform, harmonic
基金项目:国家自然科学基金(51667020);自治区教育厅重点项目(XJEDU2019I009);自治区实验室开放课题(2018D04005);教育部创新团队滚动项目(IRT-16R633)
Author NameAffiliationE-mail
Zhang Lele* Renewable Energy Power Generation and Grid Technology,Engineering Research Center of Ministry of Education,Xinjiang University 1176081829@qq.com 
Wang Haiyun Renewable Energy Power Generation and Grid Technology,Engineering Research Center of Ministry of Education,Xinjiang University 327028229@qq.com 
Wang Weiqing Renewable Energy Power Generation and Grid Technology,Engineering Research Center of Ministry of Education,Xinjiang University 3064486275@qq.com 
Hits: 1074
Download times: 286
中文摘要:
      经验模态分解(EMD)作为希尔伯特-黄变换(HHT)的重要组成部分,为了克服其在谐波检测中出现的模态混叠、端点效应问题,提出采用自适应噪声完备集合经验模态分解(CEEMDAN)和希尔伯特变换(HT)相结合的谐波检测新方法。文章首先在理论上对比分析了EMD、EEMD以及CEEMDAN算法,研究CEEMDAN算法的特性。再用CEEMDAN算法对原始信号进行分解,得到固有模态函数(IMF)。最后用HT算法对每阶IMF分量进行分析,检测到谐波中包含的瞬时幅频信息。算例仿真结果表明,相对于HHT算法对信号的处理能力,文中提出的方法在谐波检测中有效地克服了EMD算法的弊端,提高了信号分解精度。
英文摘要:
      Empirical mode decomposition (EMD) is an important part of Hilbert-Huang transform (HHT), in order to overcome its modal aliasing and endpoint effect in harmonic detection, a novel harmonic detection method combing adaptive noise complete integration of empirical mode decomposition (CEEMDAN) and Hilbert transform (HT) is proposed in this paper. This method firstly compares and analyzes EMD, EEMD and CEEMDAN algorithm in theory, and studies the characteristics of CEEMDAN algorithm. Then, CEEMDAN algorithm is adopted to decompose the original signals to obtain the intrinsic modal function (IMF). Finally, the HT algorithm is used to analyze the IMF component of each order, and the instantaneous amplitude-frequency information contained in the harmonic is detected. The simulation results show that compared with the signal processing capability of HHT algorithm, the proposed method overcomes the disadvantages of EMD algorithm in harmonic detection and improves the accuracy of signal decomposition.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd