• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进多目标海樽群算法的电力系统优化调度
A Multi-objective Salp Swarm Algorithm for Environmental Economic Power Dispatch
Received:June 18, 2020  Revised:June 18, 2020
DOI:10.19753/j.issn1001-1390.2023.07.012
中文关键词: 环境经济调度  多目标海樽群算法  约束处理方法  最佳折中解
英文关键词: Environmental economic dispatch  Multi-objective salp swarm algorithm  Constraint processing method  Optimal compromise solution
基金项目:国家自然科学基金项目(61671222)
Author NameAffiliationE-mail
XIA Aiming* School of Electronic Information,Jiangsu University of Science and Technology 362931408@qq.com 
WU Xuedong School of Electronic Information,Jiangsu University of Science and Technology woolcn@163.com 
Hits: 1012
Download times: 308
中文摘要:
      文中提出了一种新的多目标海樽群优化算法,将其与等式约束修正技术和可行解占优约束处理技术相结合,用于求解高度约束的电力系统环境经济优化调度问题。该算法采用高斯采样策略和变异操作增强其寻优性能;通过一种改进的基于动态拥挤距离的非支配排序方法获得分布均匀的帕累托最优前沿;应用模糊集理论为决策者提供最佳折中解。在IEEE 30节点6机组标准测试系统上进行算例仿真,并与其它优化算法进行了对比。结果表明,所提算法在求解电力系统环境经济调度问题时具有更好的优化效果。
英文摘要:
      In this paper, a new multi-objective salp swarm optimization algorithm is proposed, which is combined with equality constraint modification technology and feasible solution dominant constraint processing technology to solve the highly constrained environmental economic optimization dispatch problem of power system. A Gauss sampling strategy and a mutation operator is adopted to enhance the optimization performance of the suggested algorithm; A non-dominated sorting method based on improved dynamic crowding distance is used to obtain a uniformly distributed Pareto-optimal front; A fuzzy set theory is applied to provide the best compromise solution for decision makers. Simulations are carried out on the IEEE 30-bus 6-unit standard test system and compared with other optimization algorithms. The results show that the proposed algorithm has better optimization effect in solving power system environmental economic dispatch problem.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd