• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于k-means的智能电表负荷测量估算
Load measurement and estimation of smart meter based on k-means
Received:June 28, 2020  Revised:July 28, 2020
DOI:10.19753/j.issn1001-1390.2021.10.028
中文关键词: k-means算法  智能电表  负荷预测  聚类分析  距离函数
英文关键词: K-means  algorithm,smart  meter,Load  forecasting,cluster  analysis,distance  function
基金项目:
Author NameAffiliationE-mail
ZHANGSWei* State Grid Jibei Electric Power Research Institute accreditation center ZhangW_166@163.com 
Hits: 1501
Download times: 408
中文摘要:
      本文提出了一种基于k-means聚类分析的负荷估计算法。该算法将聚类的负荷曲线和距离函数应用于估算缺失和未来的测量值,研究了Canberra、Manhattan、Euclidean和Pearson的相关距离函数,利用聚合智能电表的每日和分段负荷曲线实施了一些案例研究。当分段配置曲线覆盖的时间窗口小于或等于24h,仿真结果表明,Canberra距离优于其他距离函数;结果还显示,分段式集群中心比每日集群中心产生更准确的负荷估计,聚类中心在16–24 h范围内可获得更高的准确性估计。根据本文的研究成果,可以将开发的负荷估算算法与状态估算或其他网络操作工具集成在一起,可以更好地监视和控制配电网络,为电力系统提供服务。
英文摘要:
      This paper proposes a load estimation algorithm based on K-means clustering analysis. In this algorithm, the clustering load curve and distance function are applied to estimate the missing and future measured values. The correlation distance functions of Canberra, Manhattan, Euclidean and Pearson are studied. Some case studies are carried out by using the daily and segmented load curves of the aggregation smart meter. When the time window covered by the segmented configuration curve is less than or equal to 24 hours, the simulation results show that the Canberra distance is better than other distance functions; the results also show that the segmented cluster center produces more accurate load estimation than the daily cluster center, and the cluster center can obtain more accurate estimation within the range of 16 – 24 hours. According to the research results of this paper, the developed load estimation algorithm can be integrated with state estimation or other network operation tools, which can better monitor and control the distribution network and provide services for the power system.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd