• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进卷积神经网络的非侵入负荷辨识方法研究
Non-intrusive load identification based on inproved convolutional neural network
Received:July 15, 2020  Revised:July 15, 2020
DOI:10.19753/j.issn1001-1390.2024.01.019
中文关键词: 非侵入式负荷监测  负荷辨识  低频采样  CNN
英文关键词: non-intrusive load monitoring, Load identification, Low frequency sampling, CNN
基金项目:国家自然科学基金资助项目(51667007);贵州省科技计划项目(黔科合基础[2019]1058、黔科合基础[2019]1128)
Author NameAffiliationE-mail
LI Li Electric Power Research Institute of Guizhou Power Grid Co., Ltd., Guiyang 550002, China. 997645530@qq.com 
HUANG Youjin Guizhou University,Guiyang 550025, China. 511905681@qq.com 
XIONG Wei* Guizhou University,Guiyang 550025, China. 420034562@qq.com 
WANG Min Guizhou University,Guiyang 550025, China. 2692151916@qq.com 
YANG Dongsheng Electric Power Research Institute of Guizhou Power Grid Co., Ltd., Guiyang 550002, China. 110862963@qq.com 
Hits: 1511
Download times: 263
中文摘要:
      非侵入式负荷监测作为客户侧泛在电力物联网重要技术之一,不仅有助于电力公司加强负荷管理,还可以引导用户合理安排负荷的使用,为实现以家庭电力用户为主体的需求侧响应和满足居民用户对精准精益用电服务需求提供了重要的技术支持。对非侵入式负荷监测中低频采样信号分辨率低,负荷特征易重叠,以及卷积神经网络不能有效辨识具有相似波形特征负荷的问题,提出了融合暂态电流波形和时域特征的改进方法,将暂态电流值均方根融合到电流波形图像以提升相似波形特征负荷的辨识正确率。通过实测数据和负荷识别参考数据集(REDD)测试,验证了所提方法的可行性和有效性。
英文摘要:
      Non-intrusive load monitoring is one of the important technologies of the ubiquitous power IoT on the customer side, which not only helps the power company to strengthen load management, but also can guide users to rationally arrange the use of the load. In order to achieve the demand side with household power users as the main body, it provides important technical support for responding to and satisfying the demand of residents for precise and lean electricity service. In this paper, for the problem of low resolution of low-frequency sampling signals in non-intrusive load identification and easy overlap of load characteristics, two confluent transient current waveforms and time-domain characteristics are proposed for convolutional neural networks that cannot effectively identify loads with similar waveform characteristics. One of the improved methods is to integrate the root mean square(RMS) of the transient current value into the current waveform image, and the other is to superimpose the threshold judgment on the basis of the identification result of the convolutional neural network to improve the recognition accuracy of the similar waveform feature load. Through the measured data and reference energy disaggregation data set (REDD) test, the feasibility and effectiveness of the proposed method are verified.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd