• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于CNN和LightGBM的新型风电功率预测模型
Short term wind power prediction based on convolution neural network and LightGBM algorithm
Received:July 17, 2020  Revised:July 29, 2020
DOI:10.19753/j.issn1001-1390.2021.11.017
中文关键词: 风力发电  卷积神经网络  LightGBM  短期风电功率预测  融合模型
英文关键词: wind power generation  convolution neural network  lightgbm  short term wind power prediction  fusion model
基金项目:
Author NameAffiliationE-mail
Zhang AIfeng* Chongqing Electric Power Trading Center Co,Ltd,Chongqing, China hmtwhcy999@163.com 
Duan Xiyu Electric Power Research Institute,Hu Nan,Chang Sha hmtwhcy999@163.com 
He Xiaofeng Guodian Chongqing Hengtai Power Generation Co,Ltd,Chongqing, China hmtwhcy999@163.com 
Hits: 2473
Download times: 528
中文摘要:
      考虑到风力发电的波动性和不确定性,本文提出了一种基于卷积神经网络和LightGBM相结合的新型风电功率预测模型。首先,通过分析风电场与相邻风电场原始数据的时序特征,构建出新的特征集;其次,应用卷积神经网络(CNN)从输入数据中提取信息,并通过比较实际结果调整网络参数;然后,考虑到单一卷积模型在预测风电时的局限性,将LightGBM分类算法集成到模型中从而提高预测的准确性和鲁棒性。最后,将提出的算法与已有的支持向量机、LightGBM和CNN进行仿真对比,结果证明所提出的融合模型具有更好的精度和效率。
英文摘要:
      Considering the fluctuation and uncertainty of wind power generation, a new wind power prediction model based on convolution neural network and LightGBM is proposed in this paper. Firstly, a new feature set is constructed by analyzing the temporal characteristics of the original data of wind farms and adjacent wind farms. Secondly, the information is extracted from the input data by using convolution neural network (CNN) and the network parameters are adjusted by comparing the actual results. Then, considering the limitations of single convolution model in wind power prediction, LightGBM classification algorithm is integrated into the model to improve the prediction. Accuracy and robustness of measurement. Finally, the proposed algorithm is compared with the existing support vector machines, LightGBM and CNN. The results show that the proposed fusion model has better accuracy and efficiency.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd