• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
电力物联网移动边缘计算任务卸载策略
Power internet of things mobile edge computing task offload strategy
Received:July 17, 2020  Revised:July 17, 2020
DOI:10.19753/j.issn1001-1390.2024.04.022
中文关键词: 电力物联网  约束优化  遗传算法  移动边缘计算  卸载策略
英文关键词: Power Internet of Things  constraint optimization  genetic algorithm  mobile edge computing  unloading strategy
基金项目:
Author NameAffiliationE-mail
Li Ning* State Grid Ningxia Maintenance Company ccchmt123@163.com 
Yu Xiaoqing State Grid Ningxia Maintenance Company ccchmt123@163.com 
Chen Wei State Grid Ningxia Maintenance Company ccchmt123@163.com 
Wang Xuan State Grid Ningxia Maintenance Company ccchmt123@163.com 
Cao Kai State Grid Ningxia Maintenance Company ccchmt123@163.com 
Hits: 394
Download times: 226
中文摘要:
      由于云计算框架中的传播延迟无法满足电力物联网对低延迟和可靠性的要求,在移动边缘计算框架的基础上,提出一种基于电力物联网的云-边缘网络结构,并对业务响应时延进行建模。通过约束优化和改进遗传算法相结合求解优化模型,得出最优计算卸载策略。通过仿真进行对比分析,验证提出的移动边缘计算卸载策略的有效性。结果表明,该策略在提高业务处理可靠性的同时,也大幅度降低了故障情况下业务响应时延。
英文摘要:
      For the propagation delay in the cloud computing framework, it is increasingly difficult to meet the requirements of low delay and reliability of the power Internet of things. Based on the mobile edge computing framework, a cloud edge network structure based on the power Internet of things is proposed, models the service response delay, solves the optimization model through the combination of constraint optimization and improved genetic algorithm, and obtains the optimal computing unloading strategy. The effectiveness of unloading strategy is verified by simulation. The results show that this strategy can not only improve the reliability of business processing, but also greatly reduce the delay of business response in the case of failure. This study provides some references for the development of mobile edge computing.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd