• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
热老化对车载高压电缆终端应力控制管/EPDM复合层间界面放电特性的影响研究
Study on the influence of thermal aging on the discharge characteristics of the composite interlayer interface between the SCT and EPDM of the vehicle high voltage cable terminal
Received:August 05, 2020  Revised:December 30, 2022
DOI:10.19753/j.issn1001-1390.2023.10.008
中文关键词: 车载高压电缆终端  应力控制管  热老化  复合层间界面  放电特性  陷阱特性
英文关键词: vehicle high voltage cable terminal, SCT, thermal aging, composite interlayer interface, discharge characteristics, trap characteristics
基金项目:国家自然(51907167)
Author NameAffiliationE-mail
Zhang An CRRC QINGDAO SIFANG CO,LTD Qingdao 1612185596@qq.com 
PAN Guixiang CRRC QINGDAO SIFANG CO,LTD Qingdao liukai@swjtu.edu.cn 
LI Guangjian School of Electrical Engineering,Southwest Jiaotong University 1612185596@qq.com 
Yang Yan School of Electrical Engineering,Southwest Jiaotong University 1612185596@qq.com 
WEI Long CRRC QINGDAO SIFANG CO,LTD Qingdao 3027419587@qq.com 
GAO Guoqiang* School of Electrical Engineering,Southwest Jiaotong University xnjdggq@163.com 
Hits: 1108
Download times: 298
中文摘要:
      车载高压电缆终端应力控制管(以下简称“应力管”)与乙丙橡胶(EPDM)所组成的复合层间界面间频繁发生放电现象,是造成终端绝缘击穿故障的常见部位,而应力管热老化特性变化又是影响其放电发展过程的关键因素之一。为探究应力管热老化特性对复合层间界面放电特性的影响规律,依据车载高压电缆终端特殊的绝缘结构及实际运行工况,分别在热老化温度为100 ℃、125 ℃和140 ℃三种老化环境下设计了应力管人工加速热老化试验,通过自制了老化应力管试样/EPDM复合层间界面模型和强极性针-板电极模型,搭建复合层间界面闪络试验平台,探明了不同老化条件下应力管试样对复合层间界面起始放电电压和闪络电压的影响规律;建立了应力管表面电荷输运模型,从微观层面探明并揭示了不同老化条件下应力管表面的载流子电导率、迁移速率的变化对复合层间界面模型放电特性的影响机理。通过以上研究,间接揭示了实际电缆终端复合层间界面的放电发展过程及演变规律。
英文摘要:
      The interface between the stress control tube (SCT) and ethylene propylene rubber (EPDM) is a common part of the cable terminal insulation breakdown fault caused by frequent discharge, and those changes of thermal aging characteristics of SCT is one of the key factors affecting the development of its discharge. For exploring the influences of thermal aging characteristics of SCT on the discharge characteristics of composite interlayer interface, according to the special insulation structure and actual operation conditions of vehicle high voltage cable terminal, the artificial accelerated thermal aging tests of SCT are designed under three aging environments such as 100 ℃, 125 ℃ and 140 ℃, and the composite interlayer interface model and strong-polar pin-plate electrode model of aging SCT/EPDM are also made, and the composite interface flashover test platform is built. Those influences of the SCT specimen on the initial discharge voltage and flashover voltage of the interface between the composite interlayer under different aging conditions are studied. The surface charge transport model of the stress tube is established, and also the carrier conductivity and migration rate of the SCT surface under different aging conditions are revealed. The influence mechanism of the change on the discharge characteristics of the composite interface model is also explored and revealed from the microscopic level. Through the above research, the development process and evolution law of the composite interlayer interface of the actual cable terminal are revealed indirectly.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd