• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于传统CNN-LSTM模型和PGAN模型的用电量预测对比研究
Comparative study on power consumption prediction based on traditional CNN-LSTM model and PGAN model
Received:August 12, 2020  Revised:December 31, 2022
DOI:10.19753/j.issn1001-1390.2023.10.016
中文关键词: 智能电网  用电量预测  自回归  卷积神经网络  长短时记忆网络  生成对抗网络
英文关键词: smart grid, power consumption prediction, autoregression, convolution neural network, long short-term memory network, generative adversarial network
基金项目:国家重点研发计划资助“多能互补高效梯级利用的分布式供能关键技术课题5:分布式能源系统主动调控”(2018YFB0905105);贵州电网有限责任公司电力规划专题研究项目(编号:060000QQ00190011)
Author NameAffiliationE-mail
卢嗣斌 贵州电网有限责任公司电网规划研究中心 billlls@163.com 
lusibin* 贵州电网有限责任公司电网规划研究中心 billlls@163.com 
卢嗣斌 贵州电网有限责任公司电网规划研究中心 billlls@163.com 
Hits: 929
Download times: 8
中文摘要:
      为保证新一代智能电网能够根据实时的用电量情况动态调节区域内电能分配及调度,需要实现高效且精准的用电量预测。传统电网中用电量预测方法是通过人工统计或者对历史同期用电量分析,粗略的计算出可能产生的用电量,不但消耗大量的人力物力,且无法满足智能电网背景下的用电量精准预测。现在采用差分整合移动平均自回归预测模型,长短时记忆网络预测模型和生成对抗网络预测模型等方法对用电量预测问题进行了研究,以取代传统的用电量预测方法。结果表明,智能算法可以最大程度上提高用电量预测的准确性,但要实现短时高效预测,还需在智能电网系统中对智能算法合理使用。
英文摘要:
      In order to ensure that the new generation of smart grid can dynamically adjust the regional power distribution and scheduling according to the real-time power consumption, it is necessary to achieve efficient and accurate power consumption prediction. The traditional power consumption prediction method is to calculate the possible power consumption roughly through manual statistics or analysis of the power consumption in the same period of history, which not only consumes a lot of manpower and material resources, but also cannot meet the accurate power consumption prediction under the background of smart grid. In order to replace the traditional power consumption forecasting methods, the differential integrated moving average autoregressive forecasting model, long short-term memory network prediction model and generative adversarial network prediction model are adopted to study the power consumption prediction. The results show that the intelligent algorithm can greatly improve the accuracy of power consumption prediction, but in order to achieve short-term and efficient prediction, it is necessary to use the intelligent algorithm reasonably in the smart grid system.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd