• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进粒子群算法优化LSTM的短期电力负荷预测
The short-term power load forecasting based on NIWPSO-LSTM neural network
Received:September 21, 2020  Revised:October 10, 2020
DOI:10.19753/j.issn1001-1390.2024.01.020
中文关键词: 短期电力负荷预测  机器学习  非线性动态调整惯性权重粒子群算法  LSTM
英文关键词: short-term power load forecasting, machine learning, NIWPSO, LSTM neural network
基金项目:国家自然科学基金资助项目( 61702321),国家自然科学基金资助项目(U1936213)
Author NameAffiliationE-mail
CUI Xing School of Computer Science and Technology, Shanghai University of Electric Power,Shanghai 201300, China 544460209@qq.com 
LI Jinguo* School of Computer Science and Technology, Shanghai University of Electric Power,Shanghai 201300, China 925967702@qq.com 
ZHANG Zhaobei School of Computer Science and Technology, Shanghai University of Electric Power,Shanghai 201300, China 1 
LI Linrong School of Information and Electrical Engineering, Meizhou Vocational Technical School, Meizhou 514017,Guangdong, China. 2 
Hits: 1452
Download times: 258
中文摘要:
      电力负荷数据具备时序性和非线性特征,长短时记忆神经网络(LSTM,long short-term memory)可以有效处理上述数据特性。然而LSTM算法性能对预置参数具有极大的依赖性,依靠经验设定的参数会使模型具有较低的泛化性能,降低了预测效果。为解决上述问题,提出非线性动态调整惯性权重粒子群算法(NIWPSO,nonlinear dynamic inertia weight strategy particle swarm optimization)与LSTM相结合的预测模型NIWPSO-LSTM。利用非线性动态调整惯性权重的方法来提升PSO的全局寻优能力,再通过NIWPSO对LSTM的参数进行优化。实验结果表明,NIWPSO-LSTM预测精度要远高于其他模型,验证了所提方案的可行性。
英文摘要:
      Power load data has time-sequence and non-linear characteristics, and Long short-term memory (LSTM) neural network can handle the above data characteristics. However, the performance of the LSTM algorithm has a great dependence on the preset parameters, and the parameters set by experience will make the model have low generalization performance and reduce the prediction effect. In order to solve the above problems, this paper proposes a prediction model NIWPSO-LSTM combining the nonlinear dynamic inertia weight particle swarm optimization (NIWPSO) and long-short-time memory(LSTM) neural network . The nonlinear dynamic inertial weights are used to improve the global optimization ability of PSO, and then, the key parameters of LSTM are optimized through NIWPSO. The results show that the prediction accuracy of NIWPSO-LSTM is much higher than other models, which verifies the feasibility of the proposed scheme.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd