• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于智能电能表大数据的非侵入式短期多节点负载预测
Non-intrusive short-term multi-nodal load forecasting based on smart metering big data
Received:September 28, 2020  Revised:October 12, 2020
DOI:10.19753/j.issn1001-1390.2020.04.005
中文关键词: 智能电表  电力大数据  负载预测  时间序列  数据挖掘
英文关键词: smart meter, power big data, load forecasting, time series, data mining
基金项目:国家重点研发项目(2018YFF0212906)
Author NameAffiliationE-mail
Wang Zhi* State Grid Hunan Electric Power Limited Company wangz_hnsg@outlook.com 
Chen Fusheng State Grid Hunan Electric Power Limited Company wangz_hnsg@outlook.com 
Hu Junhua State Grid Hunan Electric Power Limited Company wangz_hnsg@outlook.com 
Yang Jing State Grid Hunan Electric Power Limited Company wangz_hnsg@outlook.com 
Su Yuping State Grid Hunan Electric Power Limited Company wangz_hnsg@outlook.com 
Hits: 1489
Download times: 435
中文摘要:
      研究了结合智能电表计量大数据,对一定区域内的负载进行非侵入式多节点短期预测的方法。研究了集聚效应对负载建模和预测的影响,说明了多节点预测的优势与必要性。评估了影响电能需求的变量,并对数据集进行特征选择。使用多元线性回归模型对自顶向下与自底向上两类预测方法进行了比较,在真实数据上的测试表明,以智能电表计量大数据为支撑的自底向上方法在短期多节点负载预测上具有优势。
英文摘要:
      A non-intrusive multi-nodal load forecasting method for areas with big data collected by smart meters is proposed. The aggregation effects on modelling and forecasting of load are studied, indicating the supremacy and necessity of multi-nodal forecasting. Feature selection of dataset is based on the analysis of factors of electricity demand. Top-down and bottom-up forecasting approach are compared through the multiple linear regression model. Experimental results on real-world dataset shows the advantage of the bottom-up approach supported by smart meter big measurement data in short-term multi-nodal load forecasting task.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd