• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于PCA-LSTM算法的非侵入式负荷辨识方法
Non-intrusive load monitoring method based on PCA-LSTM algorithm
Received:October 21, 2020  Revised:October 21, 2020
DOI:10.19753/j.isssn1001-1390.2023.03.008
中文关键词: 非侵入式负荷监测  主成分分析  长短期记忆网络
英文关键词: Non-intrusive load monitoring, Principal component analysis, Long Short-Term Memory
基金项目:国家电网有限公司总部科技项目资助,项目编号(5400-201918180A-0-0-00)
Author NameAffiliationE-mail
Liu Ying* State Grid Jibei Electric Power Company Limited Center of Metrology 49845423@qq.com 
Peng Xinxia State Grid Jibei Electric Power Company Limited Center of Metrology 1479905580@qq.com 
Wang Tong Beijing University Of Chemical Technology 923951416@qq.com 
Yuan Ruiming State Grid Jibei Electric Power Company Limited Center of Metrology ydollars@sina.com 
Wang Hao State Grid Jibei Electric Power Company Limited Center of Metrology wanghao513@sohu.com 
Zhang Changshuai Qingdao Topscomm Communication company limited 1246159368@qq.com 
Hits: 1422
Download times: 291
中文摘要:
      了解用户负荷分布特征是智能电网建设的重要部分,非侵入式负荷监测(Non-Intrusive Load Monitoring,NILM)以其便捷、高效、成本低的优点被电力系统工作人员广泛认可。文中提出了一种基于长短期记忆网络的NILM方法,通过采集用户电力入口处的电流波形并进行数据处理,得到用户的负荷特征数据。使用主成分分析手段,减小负荷特征数量,提高运算效率。使用擅长处理连续数据的长短期记忆网络模型,在划分好的验证集与测试集上对模型优劣进行评价,以获得最优参数模型。预测实验结果显示,文中所设计的非侵入式负荷监测方法可以对包括小功率用电器在内的家用电器进行准确辨别。
英文摘要:
      Understanding the characteristics of user load distribution is an important part of smart grid construction. Non-Intrusive Load Monitoring (NILM) is widely recognized by power system workers for its advantages of convenience, efficiency and low cost. This paper proposes a NILM method based on long-term and short-term memory networks. By collecting the current waveform at the user''s power inlet and performing data processing, the user''s load characteristic data is obtained. Use principal component analysis to reduce the number of load features and improve operational efficiency. Use the long-short-term memory network model that is good at processing continuous data, the model is evaluated on the divided verification set and test set, in order to obtain the optimal parameter model. The prediction experiment results show that the non-intrusive load monitoring method designed in this paper can accurately identify household appliances including low-power appliances.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd