• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于KPCA-WPA-SVM的变压器故障诊断模型
Transformer Fault Diagnosis Model Based on KPCA-WPA-SVM
Received:January 13, 2021  Revised:January 19, 2021
DOI:10.19753/j.issn1001-1390.2021.04.023
中文关键词: 核主成分分析  狼群算法  支持向量机  故障诊断  电力变压器  
英文关键词: KPCA, wolf pack algorithm, SVM, fault diagnosis, transformer
基金项目:国家自然科学基金资助项目(51741907)
Author NameAffiliationE-mail
chen tie CHINA Three Gorges University 877710179@qq.com 
lv changqin* CHINA Three Gorges University 877710179@qq.com 
zhang xin CHINA Three Gorges University 877710179@qq.com 
chenweidong CHINA Three Gorges University 877710179@qq.com 
Hits: 1346
Download times: 443
中文摘要:
      为提高变压器故障诊断的精度,文章提出一种基于核主成分分析(KPCA)和狼群算法(WPA)优化支持向量机(SVM)参数的变压器故障诊断方法。通过KPCA提取样本数据的非线性特征并获得其主成分,再将其输入至高斯核SVM构成诊断模型,再利用狼群算法(WPA)对SVM的惩罚因子以及核参数进行优化。实验结果表明,该方法诊断准确率达到93.33%,与传统支持向量机以及KPCA-SVM诊断模型相对比,具有更高的变压器故障诊断准确率。
英文摘要:
      In order to improve the accuracy of transformer fault diagnosis, this paper proposes a transformer fault diagnosis method based on kernel principal component analysis (KPCA) and wolf pack algorithm (WPA) to optimize the support vector machine (SVM) parameters. KPCA extracts the non-linear characteristics of the sample data and obtains its principal components, and then inputs them into the Gaussian kernel SVM to form a diagnostic model, and then uses the wolf pack algorithm (WPA) to optimize the penalty factor and kernel parameters of the SVM. Experimental results show that the diagnostic accuracy rate of this method reaches 93.33%, which is higher than the traditional support vector machine and KPCA-SVM diagnostic model.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd