• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于KPCA和XGBoost算法的非侵入式负荷辨识方法
Non-intrusive load identification method based on KPCA and XGBoost algorithm
Received:February 01, 2021  Revised:March 15, 2021
DOI:10.19753/j.issn1001-1390.2024.05.011
中文关键词: 非侵入式  负荷辨识  核主成分分析  卷积  XGBoost
英文关键词: non-intrusive, load identification, Kernel principal component analysis, convolution, XGBoost
基金项目:国家电网有限公司总部科技项目(52010119000R)
Author NameAffiliationE-mail
liuyan* State Grid Jibei Marteting Service Center(Fund Intensive Control Center And Metrology Center) liuyan1989pl@126.com 
wangyujun State Grid Jibei Marteting Service Center(Fund Intensive Control Center And Metrology Center) 1658419050@qq.com 
yangxiaokun State Grid Jibei Marteting Service Center(Fund Intensive Control Center And Metrology Center) betime@yeah.net 
liwenwen State Grid Jibei Marteting Service Center(Fund Intensive Control Center And Metrology Center) 821328633@qq.com 
guolei State Grid Jibei Marteting Service Center(Fund Intensive Control Center And Metrology Center) 823633773@qq.com 
Hits: 584
Download times: 257
中文摘要:
      为了实现非侵入式负荷监测的功能并提高负荷辨识准确率,文中提出一种基于机器学习的负荷辨识方法。在家用电器电流波形及各次谐波特征的数据中,采用核主成分分析方法(Kernel Principal Components Analysis,KPCA),解决非线性特征提取与降维的问题,最大限度抽取特征信息。再利用一维卷积核提取时序特征并压缩后输入到XGBoost模型,得到负荷辨识结果。通过在实验室中采集数据进行算法验证,文中提出算法在各类用电器的识别中均具有较高的准确率。
英文摘要:
      In order to realize the function of non-intrusive load monitoring and improve the accuracy rate of load identification, a load identification method based on machine learning is proposed in this paper. In the data of current waveform and harmonic characteristics of household appliances, Kernel principal components analysis (KPCA) is used to solve the problem of nonlinear feature extraction and dimension reduction, and extract feature information to the maximum extent. One dimensional convolution kernel is used to extract time series features and compress them into the XGBoost model to obtain load identification results. The algorithm is verified by the data collected in the laboratory. The proposed algorithm has high accuracy rate in the identification of all kinds of electrical appliances.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd