• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于小波框架的智能电能表台区识别技术研究
Research on Smart electrcity meter area recognition technology based on wavelet frame
Received:March 15, 2021  Revised:June 01, 2021
DOI:10.19753/j.issn1001-1390.2021.10.029
中文关键词: 小波框架  台区识别  智能电能表  电压采样数据
英文关键词: Wavelet  frame, Station  area identification, Smart electrcity meter, Voltage  sampling data
基金项目::内蒙古电力公司科技计划项目([2020]29号-13)
Author NameAffiliationE-mail
Lei Shaobo* Inner Mongolia Power (Group) Co.,Ltd Power Marketing Service&Operation Management Branch 58842450@qq.com 
Liu Fengshuo Inner Mongolia Power (Group) Co.,Ltd Power Marketing Service&Operation Management Branch 1755850749@qq.com 
Li Jian INNER MONGOLIA POWER (GROUP) CO.,LTD POWER MARKETING SERVICE&OPERATION MANAGEMENT BRANCH 350391771@qq.com 
Lu Xiaoyu INNER MONGOLIA POWER (GROUP) CO.,LTD POWER MARKETING SERVICE&OPERATION MANAGEMENT BRANCH 446357521@qq.com 
Hits: 2296
Download times: 413
中文摘要:
      为解决台区识别问题,引入小波框架的基本理论为依据,使各智能电能表在使用相同的一个小波框架,分别对自身采集的电压数据进行塔式分解,并对分解子信号进行分帧处理后计算其能量的分布情况,通过差分计算来判断出采样信号中的突变位置,利用现有用电信息采集系统的宽带载波通信网络,使智能电能表之间交互判断结果,最后通过突变位置的相似性来进行自身台区识别。理论分析和实际应用表明,新技术充分利用了小波框架在信号分析上算法计算复杂度低;内存数据保存量低且节点之间的通信负荷小;识别结果正确率高的优点,在无需引入新的硬件设备情况下,为管理部门提供了一种新型的、可远程同时对大量智能电能表进行台区识别的解决方案。
英文摘要:
      To solve the problem of area identification, on the basis of introducing the basic theory of wavelet frame makes the intelligent watt-hour meter in use the same a wavelet framework, respectively to pyramidal decomposition of the voltage data gathered themselves, and to frame the signal decomposition son after calculating the distribution of energy, by differential calculation to determine the position of sampling signal mutation, Using the broadband carrier communication network of the existing electricity information acquisition system, the intelligent electricity meters can judge the results interactively. Finally, they can identify their own stations through the similarity of the mutation positions. Theoretical analysis and practical application show that the new technique makes full use of the wavelet framework and has low computational complexity in signal analysis. Low memory data retention and small communication load between nodes; The high accuracy of identification results provides a new solution for the management department which can remotely identify a large number of smart electricity meters at the same time without introducing new hardware equipment.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd