• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于LSTM的智能电网链路质量置信区间预测
Link quality confidence interval prediction of smart grid based on LSTM
Received:April 16, 2021  Revised:April 28, 2021
DOI:10.19753/j.issn1001-1390.2021.11.013
中文关键词: 智能电网  链路预测  长短时记忆网络  鲁棒性
英文关键词: smart grid  link prediction  long and short time memory network  robustness
基金项目:国家自然科学基金项目(51007032) 河北省重点研发计划(F2015502047)
Author NameAffiliationE-mail
XiangZhen* China Datang Corporation Ltd.Chongqing Branch ccc20210@163.com 
Hits: 1100
Download times: 359
中文摘要:
      为了提升智能电网无线通信的鲁棒性以及链路预测精度,提出了一种基于长短时记忆网络的智能电网链路质量置信区间下限预测方法。首先分析了智能电网的通信需求和无线链路的特点,根据分析结果,采用小波去噪算法将信噪比时间序列分解为确定性部分和随机性部分。一方面,将确定性部分输入到两层长短时记忆神经网络进行预测。另一方面,计算随机部分的方差时间序列,然后作为另一个两层长短时记忆神经网络的输入进行预测。另外分别预测确定性部分和随机部分的方差,最后计算置信区间边界。实验结果表明提出方法具有更好的鲁棒性以及预测精度。
英文摘要:
      In order to improve the robustness and link prediction accuracy of wireless communication in smart grid, a low confidence interval prediction method for link quality of smart grid based on long-term and short-term memory network is proposed. Firstly, the communication requirements of smart grid and the characteristics of wireless link are analyzed. According to the analysis results, the signal-to-noise ratio time series is decomposed into deterministic part and stochastic part by wavelet denoising algorithm. On the one hand, the deterministic part is input into the two-layer long-term and short-term memory neural network for prediction. On the other hand, the variance time series of the random part is calculated and then used as the input of another two-layer long-term and short-term memory neural network for prediction. Then the variance of the deterministic part and the stochastic part are predicted respectively, and the confidence interval boundary is calculated. Experimental results show that the proposed method has better robustness and prediction accuracy.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd