• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于大数据分析的电力信息系统安全状态监测技术研究
Research on Security State Monitoring Technology of Power Information System Based on Big Data Analysis
Received:May 19, 2021  Revised:June 09, 2021
DOI:10.19753/j.issn1001-1390.2021.11.008
中文关键词: 大数据  安全监测  信息系统  博弈论
英文关键词: Big data  security monitoring  information system  game theory
基金项目:国家自然科学基金资助项目(61501185);国家电网面向多维信息系统智能运维的关键技术研究(SGTYHT/19-JS-215),中央高校基本科研业务费专项资金资助项目(2014MS87)。
Author NameAffiliationE-mail
DING Bin* State Grid Hebei Electric Power Co,Ltd Xiong’an New District Power Supply Company,Xiong’an New District sh15930235929@163.com 
YUAN Bo State Grid Hebei Electric Power Co,Ltd Xiong’an New District Power Supply Company,Xiong’an New District 1913330860@qq.com 
ZHENG Huan-kun North China Electric Power University,Baoding 1913330860@qq.com 
XING Zhi-kun State Grid Hebei Electric Power Co,Ltd Xiong’an New District Power Supply Company,Xiong’an New District 1913330860@qq.com 
WANG Fan State Grid Hebei Electric Power Co,Ltd Xiong’an New District Power Supply Company,Xiong’an New District 1913330860@qq.com 
Hits: 1665
Download times: 413
中文摘要:
      信息系统作为电力物联网建设的核心关键部分,一旦电力信息系统受到危险将波及整个电网的安全稳定运行。目前基于电力信息系统的安全防护策略主要集中于传统的保护和检测方法上。然而,许多威胁发生在很短的时间内,很容易被忽略,无法及时发现。这些威胁通常会对电力信息系统造成巨大影响,干扰其正常运行。针对这一问题,本文提出了一种基于大数据分析的电力信息系统安全状态监测机制。将基于模糊聚类,有效评估网络运行情况。同时提出了一种博弈理论和机器学习相结合网态势感知模型,有效降低电力信息系统的安全运维风险。仿真结果表明本文所提的安全状态分析策略的有效性和可实用性。
英文摘要:
      The information system is a key part of the construction of the power Internet of Things. Once the power information system is in danger, it will affect the safe and stable operation of the entire power grid. The current security protection strategies based on power information systems mainly focus on traditional protection and detection methods. However, many threats occur in a short period of time and are easily overlooked and cannot be detected in time. These threats usually have a huge impact on the power information system and interfere with its normal operation. In response to this problem, this paper proposes a power information system security status monitoring mechanism based on big data analysis. It will be based on fuzzy clustering to effectively evaluate the network operation. At the same time, a network situation awareness model that combines game theory and machine learning is proposed to effectively reduce the security operation and maintenance risks of power information systems. The simulation results show the effectiveness and practicability of the security state analysis strategy proposed in this paper.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd