• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于Stacking集成学习的窃电检测研究
Research on Electricity Theft Detection Based on Stacking Ensemble Learning
Received:June 01, 2021  Revised:June 18, 2021
DOI:10.19753/j.issn1001-1390.2024.11.027
中文关键词: 窃电检测  Stacking集成学习  特征工程  MAP检测指标  贝叶斯优化
英文关键词: Electricity theft detection  Stacking ensemble learning  Feature engineering  MAP detection indicator  Bayesian optimization
基金项目:中国南方电网有限责任公司科技项目(GDKJXM20185800)
Author NameAffiliationE-mail
Feng Xiaofeng* Metrology Center of Guangdong Power Grid Corporation ucihqtep@163.com 
Yao Chengzhi School of Automation, Guangdong University of Technology 351221772@qq.com 
Yang Junhua School of Automation, Guangdong University of Technology yly93@163.com 
Hits: 435
Download times: 136
中文摘要:
      基于单一模型的传统窃电检测精度有待提高,应用Stacking集成学习策略,提出一种新的窃电模型,并根据实际业务需要构造MAP检测指标。为实现降维效果,按时间多维度拆解用户日用电量特征,并采用Embedding特征选择,选取其中的重要度高特征;采用贝叶斯优化调参,结合XGBoost、LightGBM和CatBoost集成模型对数据进行交叉验证和预测;分别拼接验证结果和预测结果,Stacking的基分类器采用逻辑斯蒂回归进行集成训练,输出最终预测结果。以2016 CCF竞赛数据为算例,验证了所提出的窃电模型的有效性和可行性。
英文摘要:
      Aiming at the shortcomings of traditional electricity theft detection method that only uses single classifier, an electricity theft detection model based on Stacking ensemble learning is proposed, and a MAP detection indicator is built based on actual project. First, the customer’s daily electricity consumption characteristics are disassembled in multiple dimensions according to time. And then Embedding is employed in selecting the most important features, which reduces the feature dimensions. Second, XGBoost, LightGBM, and CatBoost models are used to cross-validate and predict the results by Bayesian optimization. Finally, the base classifier of Stacking, whose integrated training with logistic regression, outputs the final prediction results. Taking 2016 CCF competition data as an example, the example analysis results verify the effectiveness and feasibility of the proposed stealing model.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd