• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于DQN的电力物联网5G边缘切片资源管理研究
Research on DQN-based 5G Edge Slicing Resource Management of Power Internet of Things
Received:July 09, 2021  Revised:July 26, 2021
DOI:10.19753/j.issn1001-1390.2022.01.021
中文关键词: 电力物联网  5G  网络切片  移动边缘计算  深度强化学习
英文关键词: Power Internet of Things, 5G, Network Slicing, Mobile Edge Computing, Deep Reinforcement Learning (DRL)
基金项目:国家自然科学基金资助项目( 61773126),南方电网公司科技项目(031800KK52190127)
Author NameAffiliationE-mail
Chen Jun* Qingyuan Power Supply Bureau,Guangdong Power Grid Liability Co Ltd 846500862@qq.com 
Huang Feiyu Qingyuan Power Supply Bureau,Guangdong Power Grid Liability Co Ltd 841976930@qq.com 
Li Zuoming Qingyuan Power Supply Bureau,Guangdong Power Grid Liability Co Ltd 13922601411@139.com 
Hits: 1085
Download times: 346
中文摘要:
      随着5G通信技术以及移动边缘计算(Mobile Edge Computing, MEC)的发展,各式各样的电力物联网新需求层出不穷。一方面,部分新型电力物联网业务需要高服务质量保障。另一方面,移动边缘计算需要为新型电力物联网的业务提供差异化的计算服务。为解决上述问题,文章定义了一种面向电力物联网业务的可靠性衡量指标。基于该指标,文中提出了一种5G边缘网络切片的资源管理方法。该方法利用深度强化学习使得电力物联网业务的时延和可靠性得到保障,同时最小化计算和通信的能耗。通过仿真实验验证了所提出的切片管理方法优于传统的资源管理方法。
英文摘要:
      With the development of 5G communications and Mobile Edge Computing (MEC), a variety of new demands for power Internet of Things (PIoT) have emerged. On the one hand, these new PIoT applications usually request for high quality of service (QoS) guarantee. On the other hand, service providers are desired to have elastic framework for diverse service level agreements (SLA). The feature technologies of network slicing and MEC have constituted a practical viable framework for solving these challenges. This article first defined a metric to measure the reliability of PIoT services. After that, a deep reinforcement learning based network slicing approach is proposed to jointly optimize the computing and communication resources. The proposed approach ensures the latency and reliability of the PIoT services while minimizing their energy consumption. Through simulation experiments, the slice management approach is demonstrated to outperform the traditional baseline approach.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd