• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于孪生分支网络的非侵入式冲击负荷辨识方法
Non-intrusive impact load identification method based onsiamese-architecture network
Received:August 02, 2021  Revised:August 13, 2021
DOI:10.19753/j.issn1001-1390.2022.11.013
中文关键词: 非侵入式负荷辨识  V-I轨迹  孪生分支网络  ARM Cortex-M4
英文关键词: non-intrusive  load identification, V-I  trajectory, siamese-architecture  network, ARM  Cortex-M4
基金项目:基金项目:国网浙江省电力有限公司科技项目(5211DS19003K)
Author NameAffiliationE-mail
SONG Lei Marketing Service Center,State Grid Zhejiang Electric Power Co,Ltd Hang Zhou songlei@126.com 
xuyongjin 无 11@126.com 
DIAO Ruipeng Qingdao Topscomm Communication Co,Ltd Qingdao diaoruipeng@topscomm.com 
LI Yilong Marketing Service Center,State Grid Zhejiang Electric Power Co,Ltd Hang Zhou liyilong@126.com 
LU Chunguang Marketing Service Center,State Grid Zhejiang Electric Power Co,Ltd Hang Zhou zjdllog@163.com 
WANG Sikui* Qingdao Topscomm Communication Co,Ltd Qingdao realwhisky@163.com 
Hits: 1135
Download times: 359
中文摘要:
      传统边缘侧电力设备无法有效检测出对电网影响较大的冲击性负荷的设备类别与功率启停信息。为此,提出一种基于孪生分支网络的非侵入式冲击负荷辨识方法。首先通过电力边缘设备入口处的高频采样数据提取波形的V-I轨迹特征和对角高斯谐波特征,接着利用卷积神经网络强大的学习能力,预设多种先验信息对不同设备冲击负荷特性进行训练,特别地,设计一种共享网络权重的孪生分支网络结构,利用不同的损失函数,智能监控与识别冲击负荷的发生分解其功率。使用非侵入式的方式并基于ARM Cortex-M4平台进行算法部署与识别测试,对比不同识别算法对冲击负荷的辨识能力,结果表明,当电网发生大功率冲击性波动时,孪生分支网络可更准确识别冲击负荷的设备类别并分解其功率,有效提高了对冲击负荷的辨识效果。
英文摘要:
      Traditional electric equipment cannot effectively detect the type of equipment and power start-stop information of impact load which has a great influence on the power grid. Therefore, a non-intrusive identification method of impact load based on siamese-architecture network is proposed. Firstly, the V-I trajectory characteristics and diagonal Gaussian harmonic characteristics of the waveform are extracted from the high-frequency sampling data at the inlet of the power edge equipment. On this basis, using the strong learning ability of convolutional neural network, a variety of prior information is preset to train the impact load characteristics of different equipment. In particular, a siamese-architecture network structure with shared network weight is designed to intelligently monitor and identify the occurrence of impact load and decompose its power by using different loss functions. The algorithm is deployed and tested based on ARM Cortex-M4 platform in a non-invasive way, and the identification ability of different identification algorithms for impact load was compared. The results show that the siamese-architecture network can be more accurate when high-power impact fluctuations occur in the power grid, the siamese-architecture network can more accurately identify the equipment category of the impact load and decompose its power, which effectively improves the identification effect of the impact load.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd