• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进型降噪自动编码器的家用负荷辨识方法
Household load identification based on noise reduction automatic encoder
Received:August 15, 2021  Revised:August 26, 2021
DOI:10.19753/j.issn1001-1390.2024.11.009
中文关键词: 负荷辨识  降噪自动编码器  REDD数据集  TraceBase数据集  机器学习DSP
英文关键词: load  identification, noise  reduction automatic  encoder, REDD  dataset, TraceBaseL  dataset, machine  learning
基金项目:国家电网有限公司总部科技项目(5400-201918180A-0-0-00)资助
Author NameAffiliationE-mail
LIU Xuan China Electric Power Research Institute liuxuan@epri.sgcc.com.cn 
LIU Xingqi* China Electric Power Research Institute xingqi1@126.com 
TANG Yue China Electric Power Research Institute 25202628@qq.com 
DOU Jian China Electric Power Research Institute 25202628@qq.com 
WU Zhongxing China Electric Power Research Institute 25202628@qq.com 
NI Bing China Electric Power Research Institute 25202628@qq.com 
He Xi China Electric Power Research Institute 25202628@qq.com 
Hits: 330
Download times: 122
中文摘要:
      家用负荷辨识准确性受数据采样速率制约显著,过高的采样速率虽然能够解决数据问题但也带来成本提高、系统设计复杂等问题。基于此,本文提出了一种仅依赖常规采样速率有功功率量测的非侵入式负荷辨识方法,该方法对传统的降噪自动编码器算法滑动窗的重叠部分计算进行了改进,使用中值滤波器对重叠窗的数据结果进行处理,能够较好的克服辨识结果偏高的问题。同过在REDD(Reference Energy Disaggregation Dataset)和TraceBase两个家庭用电数据集开展测试,证明了所提方法在辨识设备功率和判断设备所处状态两个方面都具有较好的效果,且各项指标均好于经典的基于因子隐马尔科夫模型(FHMM)算法。另外所提算法的通用性较好,能够对不同型号、品牌的同种设备进行有效辨识,具有较好的实用价值。
英文摘要:
      In order to solve the problem of high data requirement for household appliance load identification, this paper proposes a non-invasive load identification method which only relies on the conventional sampling rate active power measurement. This method is based on the denoising automatic encoder algorithm, and can accurately identify various types of loads. The test results of REDD and TraceBase datassets show that the proposed method has good results in identifying the power of the equipment and judging the state of the equipment, and its indexes are better than the classical factor Hidden Markov model (FHMM) algorithm. In addition, the proposed algorithm has good versatility and can effectively identify the same equipment of different models and brands.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd