• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于CEEMDAN-GAF的变压器机械故障检测方法
A method for detecting mechanical faults of distribution transformers based on CEEMDAN-RBF
Received:August 30, 2021  Revised:September 13, 2021
DOI:10.19753/j.issn1001-1390.2024.07.024
中文关键词: CEEMDAN  GAF  RBF  故障识别  变压器
英文关键词: CEEMDAN, GAF, RBF, fault  identification, transformer
基金项目:特高压工程技术(昆明、广州)国家工程实验室开放基金资助,项目编号:NEL202009
Author NameAffiliationE-mail
LuoBing CSG Electric Power Research Institute Co, Ltd 2425167778@qq.com 
XULI Sichuan University 2425167778@qq.com 
wangtingting CSG Electric Power Research Institute Co, Ltd 225167778@qq.com 
WangDibo CSG Electric Power Research Institute Co, Ltd 2425167778@qq.com 
HuangXiaolong Sichuan University xlhuang2018@163.com 
ZhaoLihua* Sichuan University tyorika@163.com 
Hits: 485
Download times: 186
中文摘要:
      针对传统基于振动信号的传统机械故障检测方法中需要选择多个特征量这一缺点,文中介绍了一种基于自适应白噪声完备集成经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)与格拉姆角场(gramian angular field,GAF)的配电变压器机械故障判别方法。该方法利用CEEMDAN对信号进行重构并应用GAF变换获得重构信号的二维图像,通过对二维图像灰度处理、二值化后将所得二值矩阵用于训练径向基函数(Radical Basis Function,RBF)神经网络,实现对于机械故障的检测。利用一台变压器进行了故障模拟及测试,结果表明该方法准确有效。工程实际中通过持续大量采集变压器运行数据优化RBF神经网络的分类函数,可以实现不同类型故障的精准识别,具有较高的参考价值。
英文摘要:
      Aiming at the shortcoming of traditional mechanical fault detection methods based on vibration signals that multiple feature quantities need to be selected, this paper introduces a complete ensemble empirical mode decomposition (Complete Ensemble Empirical Mode Decomposition with Adaptive Noise, CEEMDAN) based on adaptive white noise. The method of judging the mechanical fault of distribution transformer with gramian angular field (GAF). This method uses CEEMDAN to reconstruct the signal and applies GAF transformation to obtain a two-dimensional image of the reconstructed signal. After the two-dimensional image is gray-scaled and binarized, the resulting binary matrix is used to train the radial basis function (Radical Basis). Function (RBF) neural network to realize the detection of mechanical faults. A transformer was used to simulate and test the fault, and the results show that the method is accurate and effective. In engineering practice, the classification function of the RBF neural network can be optimized by continuously collecting a large number of transformer operating data, which can realize the accurate identification of different types of faults, which has high reference value.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd