• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于优选建模和深度置信网络的电压互感器误差定量评估方法
Error quantitative evaluation method of potential transformer based on optimal modeling and deep belief network
Received:September 10, 2021  Revised:September 23, 2021
DOI:10.19753/j.issn1001-1390.2024.08.007
中文关键词: 电压互感器  建模数据异常检测  优选建模  深度置信网络  定量评估
英文关键词: potential transformer, modeling data anomaly detection, optimized modeling, deep belief network, quantitative evaluation
基金项目:国家自然科学基金联合基金重点支持项目 (U20A20306)
Author NameAffiliationE-mail
XU Yunwu* School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 979974542@qq.com 
LI Hongbin School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China lihongbin@hust.edu.cn 
ZHANG Chuanji School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China chuanjizhang@hust.edu.cn 
Hits: 512
Download times: 143
中文摘要:
      电压互感器(potential transformer,PT)是电力系统中电压测量的关键设备,对PT的计量误差进行在线评估将有助于维护电能贸易结算的公平公正,其中基于数据驱动的PT在线评估方法因其评估性能优越而具有良好的工程应用前景,但存在着未考虑建模数据中是否含有异常数据以及无法定量评估等问题。为此,文中提出了一种基于优选建模和深度置信网络的定量评估方法,该方法通过无监督聚类技术确定理想的建模数据集,并利用深度置信网络进行训练得到PT定量评估模型,进而对PT实时输出信号进行分析实现误差定量评估。实验表明,该方法可有效检测出建模数据中的异常数据,且准确监测0.2级PT的计量误差状态,实现在运PT计量性能的准确评估。
英文摘要:
      The potential transformer (PT) is the key device for voltage measurement in power system. Online evaluation of the measurement error of PT will help maintain the fairness and justice of electricity trade settlement. Among them, the data-driven online evaluation method has good engineering application prospects because of its superior evaluation performance. However, there are problems such as failure to consider whether the modeling data contains abnormal data and the inability to quantitatively evaluate. To this end, this paper proposes a quantitative evaluation method based on optimal modeling and deep belief network(DBN). This method adopts unsupervised clustering technology to determine the ideal modeling data set, and utilizes the deep belief network for training to obtain the PT quantitative evaluation model, and then, analyzes the real-time output signal of PT to achieve error quantitative evaluation. Experiments show that this method can effectively detect the abnormal data in the modeling data, and accurately monitor the measurement error status of the 0.2-level PT, and realize the accurate evaluation of the measurement performance of in-service PT.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd