• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进XGBoost算法的XLPE电缆局部放电模式识别研究
Research on partial discharge pattern recognition of XLPE cable based on parameter optimization XGBoost
Received:October 27, 2021  Revised:November 20, 2021
DOI:10.19753/j.issn1001-1390.2020.04.015
中文关键词: XLPE电缆  模式识别  XGBoost  局部放电  学习曲线
英文关键词: XLPE cable, pattern recognition, random forest, characteristic parameter, Partial Discharge
基金项目:国家自然科学基金青年科学基金(51807106),济宁市重点研发计划(2020PZJY006),中央高校基本科研业务费(DUT20RC(3)018)和中国石油化工股份有限公司科技项目(CLY21062)资助项目
Author NameAffiliationE-mail
Liu Weigong SINOPEC Dalian Research Institute of Petroleum and Petrochemicals liuweigong.fshy@sinopec.com 
Wang Haozhan* School of Electrical Engineering,Dalian University of Technology,Liaoning Dalian dlutdqwhz@163.com 
Shi Zhentang SINOPEC Dalian Research Institute of Petroleum and Petrochemicals 8804413@163.com 
Li Dechu Sinopec Guangzhou Company LIDC.gzsh@sinopec.com 
Hu Xueliang Sinopec Guangzhou Company HUXL.gzsh@sinopec.com 
Li Jinsong School of Electrical Engineering,Dalian University of Technology,Liaoning Dalian dultdqwhz@163.com 
Hits: 1783
Download times: 429
中文摘要:
      局部放电模式识别对交联聚乙烯(XLPE)电缆绝缘性能的判定具有重要意义。在XLPE电缆的局部放电模式识别的研究中,传统机器学习算法存在收敛速度慢、易过拟合、识别准确率低等问题。针对这一问题,本文采用一种基于参数调优XGBoost的XLPE电缆局部放电模式识别方法。通过搭建电缆局部放电试验平台人为构造四种35kV XLPE电缆局部放电缺陷模型进而获取原始数据,利用MATLAB软件完成统计特征参数的计算,以特征参数为输入量,放电类型预测结果为输出量,通过交叉验证、学习曲线确定最优参数进而得到有效的模式识别模型。实验分析结果表明,与决策树、随机森林、BP神经网络和SVM等局部放电模式识别方法相比,本文方法可进一步提升识别准确率,总体识别准确率为96.93%。#$NL关键词:XLPE电缆; 模式识别; XGBoost; 局部放电; 学习曲线#$NL中图分类号:TM591
英文摘要:
      Partial discharge pattern recognition is of great significance to the determination of the insulation performance of cross-linked polyethylene (XLPE) cables. In the study of partial discharge pattern recognition of XLPE cables, traditional machine learning algorithms have problems such as slow convergence, easy over-fitting, and low recognition accuracy. To solve this problem, this paper adopts a method of partial discharge pattern recognition for XLPE cables based on parameter optimization XGBoost. Through building a cable partial discharge test platform, artificially construct four 35kV XLPE cable partial discharge defect models to obtain the original data, and use MATLAB software to complete the calculation of statistical characteristic parameters. The characteristic parameters are used as the input and the discharge type prediction result is the output. Through Cross-validation,learning The curve determines the optimal parameters to obtain an effective pattern recognition model. The experimental analysis results show that compared with the partial discharge pattern recognition methods such as decision tree, random forest, BP neural network and SVM, the method in this paper can further improve the recognition accuracy, and the overall recognition accuracy rate is 96.93%.#$NLKeywords:XLPE cable, pattern recognition, random forest, characteristic parameter, Partial Discharge
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd