• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于离线高斯模型的输电线路无人机巡检缺陷智能识别方法研究
Research on intelligent recognition method of transmission line UAV inspection defects based on offline Gaussian model
Received:October 29, 2021  Revised:November 11, 2021
DOI:10.19753/j.issn1001-1390.2022.03.012
中文关键词: 碳中和  长尾分布  离线高斯模型  目标检测
英文关键词: carbon neutrality, long-tailed distribution, offline Gaussian model, object detection
基金项目:国家自然科学基金
Author NameAffiliationE-mail
Wang Hongxing* Jiangsu Fangtian Power Technology Company Ltd. whx@js.sgcc.com.cn 
Chen Yuquan Jiangsu Fangtian Power Technology Company Ltd. chenyq76@hotmail.com 
Zhang Xin Jiangsu Fangtian Power Technology Company Ltd. 181586108@qq.com 
Wu Mei Jiangsu Fangtian Power Technology Company Ltd. wumeiwork@outlook.com 
Mao Weiping Huazhong University of Science and Technology weipingmao@hust.edu.cn 
Li Hongbin Huazhong University of Science and Technology lihongbin@hust.edu.cn 
Hits: 1797
Download times: 475
中文摘要:
      高压架空输电线路是沟通我国清洁能源中心与负荷中心的关键基础设施,保障其安全稳定运行对“双碳”目标按期达成至关重要。基于无人机巡检的电网输电线路缺陷检测具有很强的实用价值。由于缺陷种类众多,各类别分布不均衡而导致了长尾分布效应。文中介绍了一种基于离线高斯模型的缺陷检测方案,该方案通过离线高斯模型去增强Mask R-CNN中的分类器,从而提高分类器在“尾部”数据类别上的分类性能。其中离线高斯模型不需要额外训练,对数据分布具有鲁棒性。该方案简单有效且拓展性强,不需要额外的模型结构和超参数,可以直接在已有的检测、分割模型上使用,能够有效缓解数据类别长尾分布对分类器的影响。
英文摘要:
      The overhead high-voltage transmission lines are the key infrastructures that connect China''s clean energy centers and load centers. Ensuring their safe and stable operation is vital to achieving the emission peak and carbon neutrality goal on schedule. Defect detection of power transmission lines based on drone inspection has strong practical value. Since there are a huge number of defect classes, the long-tailed distribution is caused by the unbalanced category distribution in datasets. This paper introduces a method based on the offline Gaussian model for defect detection in power line images. This method enhances the classifier in Mask R-CNN by using the offline Gaussian model, thereby improving the classification performance of the classifier on the tail data categories. The offline Gaussian model does not require additional training steps and is robust to data distribution. This method is simple, effective and highly scalable. It does not require additional model structures and hyperparameters. It can be directly used on existing object detection and segmentation models, which can effectively alleviate the impact of the long-tailed distributions of data categories on the classifier.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd