• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于深度学习的理论线损率计算方法研究
Study on the theoretical line loss rate calculation method based on deep learning
Received:November 04, 2021  Revised:November 17, 2021
DOI:10.19753/j.issn1001-1390.2024.10.005
中文关键词: 线损率  深度置信网络  深层神经网络  逐层贪婪法  随机小批量梯度下降法
英文关键词: line loss rate, deep confidence network, deep neural network, layer-by-layer greedy method, random small batch gradient descent method
基金项目:国网科技项目(GSK001278)
Author NameAffiliationE-mail
Shang YunFei* State Grid GanSu Power Company supwindfly@163.com 
Jiang Mingjun State Grid GanSu Power Company,Gansu Lanzhou supwindfly@163.com 
Zhang Dongping State Grid GanSu Power Company,Gansu Lanzhou supwindfly@163.com 
Zhao Minyu State Grid GanSu Power Company,Gansu Lanzhou supwindfly@163.com 
Hits: 543
Download times: 168
中文摘要:
      线损率是综合反映电网规划、生产、管理等的重要经济技术指标,针对目前计算方法存在的计算速度慢和误差大等问题,提出了一种结合深层置信网络和深层神经网络的理论线损率计算模型。将计算过程转化为多特征提取过程,模型通过逐层贪婪法和随机小批量梯度下降法等进行训练。通过算例与传统模型进行对比分析。结果表明,与传统的线损率计算方法相比,所提方法无论是精度还是效率都有一定的提升,表明了所提方法的优越性,具有一定的实用价值。
英文摘要:
      Line loss rate is an important economic and technical index comprehensively reflecting power grid planning, production and management, aiming at the problems of slow calculation speed and large error in current calculation methods, a theoretical line loss rate calculation model combining deep confidence network and deep neural network is proposed. The calculation process is transformed into a multi-feature extraction process, and the model is trained by layer-by-layer greedy method and random small batch gradient descent method. Comparative analysis is conducted through calculation examples and traditional models. The results show that the accuracy and efficiency of the proposed method are improved compared with the traditional line loss rate calculation method, which shows the superiority of the proposed method and has certain practical value.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd