• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
考虑多能源协同的智慧能源站优化运行策略研究
Research on operation strategy optimization of smart energy station considering multi energy cooperation
Received:November 08, 2021  Revised:November 29, 2021
DOI:10.19753/j.issn1001-1390.2002.09.005
中文关键词: 关 键 词:智慧能源站  混合整数线性规划  非线性模型
英文关键词: Smart energy station  mixed integer linear programming  nonlinear model
基金项目:国网浙江省电力有限公司科技项目:“多站融合”智慧能源站系统集成分析关键技术研究与决策运行支撑平台开发(5211JY200001)
Author NameAffiliationE-mail
Sun Yikai* State Grid Zhejiang Electric Power Co,Ltd Economic and Technical Research Institute pharryu@163.com 
Zhang Lijun State Grid Zhejiang Electric Power Co,Ltd Economic and Technical Research Institute zhanglijun@zj.sgcc.com.cn 
Sun Yingying Dongfang Electronics Co,Ltd,Yantai ytdtsunyy@163.com 
Yu Chutian State Grid Zhejiang Electric Power Co,Ltd Economic and Technical Research Institute yuchutian@zj.sgcc.com.cn 
Yao Yubin Dalian Maritime University,Dalian yaoyubin@dlmu.edu.cn 
Hits: 1978
Download times: 318
中文摘要:
      分布式多能源技术的灵活性,促进了智慧能源站的发展。但由于系统非线性和建模的复杂性,智慧能源站优化问题中电力、热能网络和能源需求不确定性相关的约束常常被忽略。为此,提出了一种考虑系统不确定性的智慧能源站运行优化策略。该策略以能源支出成本为目标函数,使用迭代建模,包括混合整数线性规划(MILP)和非线性能源网络方程的线性近似。在MILP优化阶段,将所有能源网络中可控设备的运行计划都在考虑不确定性和综合网络的线性近似的情况下进行建模。然后建立非线性综合能源网络模型,并通过两种模型之间的迭代,提高线性模型的精度。使用了多维链表,有效地对不确定性进行建模并提高了计算效率。在仿真中对所提出的策略进行了测试,使用该策略进行优化后,测试系统的能源支出降低了约3%,验证了该策略的有效性。
英文摘要:
      The flexibility of distributed multi energy technology promotes the development of smart energy stations. However, due to the nonlinearity of the system and the complexity of modeling, the constraints related to the uncertainty of power, thermal network and energy demand are often ignored in the optimization problem of smart energy station. Therefore, a smart energy station operation optimization strategy considering system uncertainty is proposed. The strategy takes the energy expenditure cost as the objective function and uses iterative modeling, including mixed integer linear programming (MILP) and linear approximation of nonlinear energy network equations. In the MILP optimization stage, the operation plans of controllable equipment in all energy networks are modeled considering the uncertainty and the linear approximation of the integrated network. Then the nonlinear comprehensive energy network model is established, and the accuracy of the linear model is improved through the iteration between the two models. The multi-dimensional linked list is used to effectively model the uncertainty and improve the calculation efficiency. The proposed strategy is tested in the simulation. After using the strategy for optimization, the energy expenditure of the test system is reduced by about 3%, which verifies the effectiveness of the strategy.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd