• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进GM(1,1)模型的智能电能表集抄数据二次出账研判
Research and Judgment on the secondary out-account of integrated data of smart meters based on improved GM(1,1)
Received:November 11, 2021  Revised:November 11, 2021
DOI:10.19753/j.issn1001-1390.2022.12.025
中文关键词: 智能电能表  集抄数据  二次出账  改进GM(1,1)
英文关键词: smart  meter, integrated  data, secondary  out-account, improved  GM(1,1)
基金项目:国网上海市电力公司科技项目(52094017001X)
Author NameAffiliationE-mail
Zhu Zheng* State Grid Shanghai Electric Power Research Institute 1159818989@qq.com 
Yu Lei State Grid Shanghai Electric Power Research Institute wwssdd2020@163.com 
Xu Yukun State Grid Shanghai Electric Power Research Institute xuyukun2020@126.com 
Jiang Chao State Grid Shanghai Electric Power Research Institute jiangchao20210325@163.com 
Zhang Jiahai Yantai Dongfang Wisdom Electric Co., Ltd, hdjwsd2020@163.com 
Han Dongjun Yantai Dongfang Wisdom Electric Co., Ltd, handongjun@dongfang-china.com 
Hits: 974
Download times: 323
中文摘要:
      针对智能电能表集抄数据出账存在的若干问题,融合动态初值与新陈代谢建模思想,提出了基于改进GM(1,1)模型的智能电能表集抄数据二次出账研判方法。依次将原始数据序列中数据作为GM(1,1)模型的初值,推断出残差最小所对应的初值,进而可获得使GM(1,1)模型残差最小所需的数据维数,再利用新陈代谢的建模思想,建立改进GM(1,1)模型,将改进GM(1,1)模型应用于首次出账失败的智能电能表集抄数据二次研判,结果表明,相较最小二乘法与传统GM(1,1)模型,改进GM(1,1)模型具有更好的预测精度,更适合智能电能表集抄数据二次出账研判。
英文摘要:
      Aiming at several problems existing in the collection of data reading of smart meters, combining dynamic initial value and metabolic modeling ideas, a method based on the improved GM(1,1) model for the second reading and judgment of collection data of smart meters is proposed. Take the data in the original data sequence as the initial value of the GM(1,1) model in turn, infer the initial value corresponding to the smallest residual error, and then obtain the data dimension required to minimize the residual error of the GM(1,1) model, And then use the metabolic modeling idea to establish an improved GM(1,1) model, and apply the model to the second study and judgment of the collective reading data of the smart meter that failed the first billing. The results show that, compared with the traditional least squares method and the traditional GM(1,1) model, the improved GM(1,1) model has better prediction accuracy, and is more suitable for the secondary accounting research and judgment of the collected data of the smart meter.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd