• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于GA-FSVR的极端温度应力下智能电能表退化预测模型研究
Degradation prediction for smart meter under extreme temperature stress based on GA-FSVR model
Received:November 15, 2021  Revised:December 06, 2021
DOI:10.19753/j.issn1001-1390.2022.07.022
中文关键词: 智能电能表  退化预测  温度应力  支持向量回归  遗传算法
英文关键词: smart meter  degradation prediction  temperature stress  support vector regression, genetic algorithm
基金项目:国网山东省电力公司科技项目(520626200021)
Author NameAffiliationE-mail
Du Yan State Grid Shandong Electric Power Company Marketing Service Center Metering Center duyan@sd.sgcc.com.cn 
Chen Zhiru* State Grid Shandong Electric Power Company Marketing Service Center Metering Center 838355809@qq.com 
Liang Yajie State Grid Shandong Electric Power Company Marketing Service Center Metering Center 279953868@163.com 
Wang Zhelong State Grid Shandong Electric Power Company Marketing Service Center Metering Center wangzhelong@sd.sgcc.com.cn 
Jing Zhen State Grid Shandong Electric Power Company Marketing Service Center Metering Center jingzhen@sd.sgcc.com.cn 
Zhang Zhi State Grid Shandong Electric Power Company Marketing Service Center Metering Center zhangzhi@sd.sgcc.com.cn 
Hits: 1463
Download times: 369
中文摘要:
      针对极端温度应力下智能电能表退化情况难以准确预测的问题,以计量误差作为退化指标,提出一种基于融合核支持向量回归(FSVR)与遗传算法(GA)的智能电能表退化预测模型。首先,为了兼顾预测模型的学习与泛化能力,在传统单核支持向量回归模型的基础上,提出一种基于RBF核与Sigmoid核的新的融合核函数,并进一步建立基于融合核函数的FSVR模型,预测极端温度应力作用下智能电能表的退化过程;然后,在FSVR模型参数调节阶段,通过GA对核参数进行优化,提高模型预测精度。采用某批次智能电能表分别在高温(50℃)、低温(-40℃)两组极端温度应力下连续14个月的实际退化测试数据展开比较实验,结果表明提出的预测模型能准确追踪不同极端温度下智能电能表的退化趋势,可为我国典型地区的智能电能表可靠性分析提供指导。
英文摘要:
      To solve the problem that it is difficult to accurately predict the degradation variation of smart meter under extreme temperature stress, a degradation prediction model based on the combination of fusion kernel support vector regression (FSVR) and genetic algorithm (GA) was proposed. Firstly, to improve the learning and generalization ability of prediction model, a new fusion kernel function based on RBF kernel and Sigmoid kernel was proposed, and the FSVR model based on fusion kernel function was further established to predict the degradation process of smart meter under extreme temperature stress. Then, in the kernel parameter adjustment stage, the kernel parameters of SVR are optimized by GA to improve the prediction accuracy of the model. Based on the actual smart meters test data for 14 months in high temperature (50℃) and low temperature (-40℃), the experimental results show that the proposed prediction model can accurately track the degradation trend of smart meters under different extreme temperatures, which can provide guidance for reliability analysis of smart meters in typical regions of China.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd