• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于迭代加权改进BP神经网络的电容式电压互感器变比幅频特性拟合方法
A fitting method of the magnitude-frequency characteristic of capacitance voltage transformer transformation ratio based on iterative weighted improved BP neural network
Received:December 27, 2021  Revised:January 21, 2022
DOI:10.19753/j.issn1001-1390.2022.11.006
中文关键词: 电容式电压互感器  幅频特性  拟合  神经网络
英文关键词: Capacitive voltage transformer, magnitude-frequency responses characteristic, fitting, neural network
基金项目:国家电网公司科技资助项目(5200-201924064A)
Author NameAffiliationE-mail
Dai Shuangyin State Grid Henan Electric Power Research Institute 18236989269@163.com 
Li Qionglin State Grid Henan Electric Power Research Institute 13525571757@163.com 
Tang Xu* School of Electrical Engineering and Automation, Wuhan University 13080625825@163.com 
Liu Kaipei School of Electrical Engineering and Automation, Wuhan University kpliu@whu.edu.cn 
Hits: 1263
Download times: 316
中文摘要:
      针对电容式电压互感器(CVT)的变比幅频特性曲线拟合误差较大的问题,文中以BP神经网络为基础,提出了迭代加权改进的BP神经网络方法,对CVT的变比幅频特性曲线进行拟合,该方法不仅可以保证拟合曲线的均方误差满足收敛条件,还可以有效降低拟合曲线的最大误差。实例计算表明,该方法使得CVT变比幅频特性拟合曲线的最大误差降低24.45%。
英文摘要:
      Aiming at the problem of large fitting error of the transformation ratio magnitude-frequency characteristic curve of capacitive voltage transformer (CVT), this paper proposes an iterative weighted improved BP neural network method based on BP neural network. When the characteristic curve is fitted, this method can not only ensure that the mean square error of the fitted curve meets the convergence condition, but also can effectively reduce the maximum error of the fitted curve. Example calculations show that this method reduces the maximum error of the CVT transformation ratio magnitude-frequency characteristic fitting curve by 24.45%.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd