• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于单序列到多序列的轻量级非侵入式负荷监测
Non-intrusive load monitoring based on lightweight single sequence to multiple sequences model
Received:February 16, 2022  Revised:March 06, 2022
DOI:10.19753/j.issn1001-1390.2025.01.020
中文关键词: 非侵入式负荷监测  多输出  深度可分离卷积  通道注意力机制  模糊C均值聚类
英文关键词: non-intrusive load monitoring, multiple outputs, depthwise separable convolution, channel attention mechanism, fuzzy C-means
基金项目:国家自然科学基金资助项目(52077081);广东省引进创新创业团队项目(201001N0104744201)
Author NameAffiliationE-mail
Chen Wenquan South China University of Technology 201921015145@mail.scut.edu.cn 
Li Mengshi* South China University of Technology mengshili@scut.edu.cn 
Hits: 356
Download times: 85
中文摘要:
      非侵入式负荷监测(non-intrusive load monitoring, NILM)能让用户以一种低成本的方式获取家庭中各用电器的耗电情况,有利于推动实现碳中和,提升需求侧管理能力。针对一般NILM算法面对的负荷分解误差和模型计算成本间的矛盾,提出了一种基于单序列到多序列的轻量级NILM模型。模型采取基于深度可分离卷积的全卷积结构,并利用卷积核不同通道的特征提取能力实现了多输出,极大减少了模型的参数量和计算时间;然后通过引入通道注意力机制,为不同通道的特征赋予权重,降低模型的负荷分解误差。在数据处理上,利用模糊C均值聚类将电器分为单运行状态和多运行状态两类,分别采取功率估计和状态估计两种方式以降低分解误差。模型在REFIT数据集上进行了验证,实验表明模型能在大幅度减少计算成本的同时保持较低的分解误差。
英文摘要:
      Non-intrusive load monitoring (NILM) allows electricity users to obtain the power consumption of various household appliances in a low-cost way, which is conducive to promoting carbon neutrality and improving demand-side management capabilities. Aiming at the contradiction between load disaggregation errors and model calculation cost faced by general NILM algorithm, a lightweight NILM model based on single sequence to multiple sequences is proposed. The model adopts a fully convolutional structure based on depthwise separable convolution, and uses the feature extraction capabilities of different convolution kernels to achieve multiple outputs, which greatly reduces the amount of model parameters and calculation time, channel attention mechanism is then introduced to assign weights to different channels of feature maps, which reduces the load disaggregation errors of models. In terms of data processing, fuzzy C-means clustering is used to classify electrical appliances into two types, including single-operating-state appliances and multiple-operating-states appliances, and two methods of power estimation and state estimation are adopted to achieve power disaggregation errors separately. The model is verified on the REFIT dataset, and experiments show that the model can greatly reduce the computational cost while maintaining a low disaggregation error.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd