• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于星地融合的输电线路覆冰预警优化方法研究
Optimization of Meteorological Elements and Icing Prediction Based on Satellite-ground Data Fusion
Received:February 16, 2022  Revised:March 29, 2022
DOI:10.19753/j.issn1001-1390.2022.11.008
中文关键词: 星地融合  输电线路  覆冰预警  数据同化
英文关键词: satellite-ground data fusion, power transmission line, ice forecast, data assimilation
基金项目:国家电网公司总部基础前瞻项目(电网多源时空数据的信息生态链协同分析技术研究, 5700-202055305A-0-0-00)
Author NameAffiliationE-mail
Yang Zhi* China Electric Power Research Institute yangzhi0713@foxmail.com 
zhao bin China Electric Power Research Institute zhaobin@epri.sgcc.com.cn 
Li Chuang China Electric Power Research Institute lichuang@epri.sgcc.com.cn 
Han Jingshan China Electric Power Research Institute 799031915@qq.com 
Gao Jie China Electric Power Research Institute ggggjjjj4484@sina.com 
Huang Jie State Grid Anhui Electric Power Co., Ltd. 120187531@qq.com 
Hits: 1335
Download times: 378
中文摘要:
      输电线路覆冰预测对保障电网安全具有重要意义。随着气象条件日趋复杂,为了提升输电线路覆冰预测的准确性和及时性,依托现有的覆冰预测模型,本文提出一种基于卫星气象和地面气象站点数据的星地融合气象要素反演方法,对覆冰预测模型中核心气象输入参数——温度、降水、风速预报精度进行优化提升,进而提高复杂气象条件下输电线路覆冰预警精度。以浙江某输电线路为实验区,结果表明融合后的预报空间结构更加精细,更加符合本次寒潮过程特征。与杭州附近输电线路的监测数据对比表明,本文方法提前24小时的温度和降水预报偏差(RMSE)比欧洲气象预报结果分别降低了30%和27%。更重要的是,本文方法提前72小时预报结果与24小时预报结果一致性较好,预报精度没有明显下降,这对于24~72小时的覆冰预测预警有较好的指导意义。
英文摘要:
      The prediction of icing on transmission lines is of great significance to ensure the safety of power grids. With the increasingly complex meteorological conditions, this paper proposes a satellite-ground fusion meteorological element inversion based on satellite meteorological and ground meteorological station data, in order to improve the accuracy and timeliness of transmission line icing prediction, relying on the existing icing prediction model. The method optimizes and improves the prediction accuracy of the core meteorological input parameters in the icing prediction model-temperature, precipitation, and wind speed, and then improves the icing early warning accuracy of transmission lines under complex meteorological conditions. Taking a transmission line in Zhejiang as the experimental area, the results show that the improved prediction gives more refined spatial features, which is more in line with the characteristics of this cold wave process. Compared with the observation of the transmission line near Hangzhou, the temperature and precipitation forecast error (RMSE) decreased by 30% and 27% respectively in 24-hour forecast. More importantly, the 72-hour forecast skill did not degenerate significantly compared with the 24-hour forecast. This is important for the early warning on 24-72-hour icing.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd