• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于人工-真实样本度量学习的指针式仪表检测方法
Pointer meter detection method based on artificial-real sample metric learning
Received:February 26, 2022  Revised:April 04, 2022
DOI:DOI: 10.19753/j.issn1001-1390.2022.10.025
中文关键词: 指针式仪表  度量学习  目标检测  少样本  人工样本
英文关键词: pointer meter, metric learning, target detection, few-shot, artificial samples
基金项目:国家自然科学基金资助项目(U21A20486, 61871182);河北省自然科学基金资助项目(F2020502009, F2021502008, F2021502013).
Author NameAffiliationE-mail
ZhaiYongjie Department of Automation, North China Electricity Power University zhaiyongjie@ncepu.edu.cn 
ZhaoZhenyuan Department of Automation, North China Electricity Power University 907276455@qq.com 
WangQianming Department of Automation, North China Electricity Power University w.qm@foxmail.com 
BaiKang* Department of Automation, North China Electricity Power University baikang_zdh@ncepu.edu.cn 
Hits: 1054
Download times: 427
中文摘要:
      为缓解指针式仪表检测精度对样本数量的严重依赖,有效提升少样本情况下指针式仪表的检测精度,提出了基于人工-真实样本度量学习的指针式仪表检测方法。通过对指针式仪表结构进行统计分析,提取其显著特征进行建模,用以生成所需要的人工基准样本,弥补真实场景下指针式仪表数据缺乏的问题;结合度量学习的特性,以Faster R-CNN为基线模型,引入特征相似性度量模块,从低维特征向量空间降低或消除人工基准样本和真实样本之间的分布差异,并加强特征提取网络对指针式仪表显著特征的学习。实验证明,较基线模型,基于人工-真实样本度量学习的指针式仪表检测方法AP75提升了22.14%,有效提高了少样本情况下指针式仪表检测的精度。
英文摘要:
      In order to alleviate the severe dependence of the detection accuracy of pointer meter on the number of samples, and effectively improve the detection accuracy of pointer meter under the condition of few shot, a pointer meter detection method based on artificial-real sample metric learning is proposed. Firstly, the structure of pointer meter is statistically analyzed, and its significant features are extracted for modeling, so as to generate the required artificial benchmark samples to make up for the lack of pointer meter data in real scenario. Then, combined with the characteristics of metric learning, the Faster R-CNN is used as the baseline model to introduce the feature similarity metric module to reduce or eliminate the distribution difference between the artificial benchmark sample and the real sample in the low-dimensional feature vector space, and strengthen the feature extraction network to learn the significant features of the pointer meter. Experimental results show that, compared with the baseline model, AP75 of the pointer meter detection method based on artificial-real sample metric learning improves by 22.14%, which effectively improves the accuracy of pointer meter detection in the case of few shot.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd