• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于模型预测控制的家庭能量管理优化调度方法研究
Optimized dispatching strategy of home energy management system based on model predictive control
Received:March 14, 2022  Revised:March 30, 2022
DOI:10.19753/j.issn1001-1390.2024.10.004
中文关键词: 家庭能量管理系统  模型预测控制  遗传算法  预测不确定性  舒适度
英文关键词: home energy management system, model predictive control,genetic algorithm, prediction uncertainty, comfort level
基金项目:国家工信部工业互联网创新发展工程项目“工业互联网平台工程实训”(TC200802F)
Author NameAffiliationE-mail
Liu Xufei State Key of Power Systems,Dept. of Electrical Engineering,Tsinghua University lxf18@mails.tsinghua.edu.cn 
Peng Lisha State Key of Power Systems,Dept. of Electrical Engineering,Tsinghua University pls14@tsinghua.edu.cn 
Huang Songling* State Key of Power Systems,Dept. of Electrical Engineering,Tsinghua University huangsling@tsinghua.edu.cn 
Hits: 472
Download times: 138
中文摘要:
      在分布式可再生能源大规模接入和分时电价实施的背景下,为降低电费成本、提高用户舒适度并提高可再生能源消纳率,提出了一种基于模型预测控制的家庭能量管理策略。建立由分布式光伏和各类用电负载等组成的家庭能量系统,分析各类设备的工作特性,提出相应的舒适度评价指标,特别针对空调这一典型功率可变负荷,结合建筑的热动态特性,建立室内温度预测模型。在建立家庭能量系统的基础上,使用遗传算法进行优化管理,并在模型预测控制框架下不断执行和更新。最后,实验对比结果表明,文中提出的基于模型预测控制的家庭能量管理策略可以有效实现能量的优化调度,并在预测不确定场景下具有较强鲁棒性。
英文摘要:
      In the context of distributed renewable energy access and implementation of time-of-use tariff, a home energy management strategy based on model predictive controlis proposed to reduce electricity cost, improve user comfort and increase renewable energy consumption. This paper establishes a home energy system consisting of distributed photovoltaic and various types of electric loads, analyzes working characteristics of various devices and puts forward corresponding comfort evolutionindices. For the typical power variable load of air conditioner, an indoor temperature prediction model is established by combining the thermal dynamic characteristics of the building. Based on the architecture of the home energy system, the optimal management is carried out using genetic algorithms, which are continuously implemented and updated under the model prediction control framework. The experimental comparison results show that the home energy management strategy based on model predictive control proposed in this paper can effectively achieve the optimal scheduling of energy and has strong robustness under the prediction uncertainty environment.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd