• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进BP神经网络的低压配电台区智能电能表误差状态评估模型
Estimation method of operation error of intelligent meter based on particle swarm optimization BP neural network
Received:April 22, 2022  Revised:May 21, 2022
DOI:10.19753/j.issn1001-1390.2022.11.024
中文关键词: 智能电能表  误差估计  粒子群优化  BP神经网络  隐含层
英文关键词: intelligent electricity meter  error estimation  particle swarm optimization  BP neural network  hidden layer
基金项目:国网辽宁省电力公司基金(2019YF-60)
Author NameAffiliationE-mail
LIU Wenyu* State Grid Liaoning Electric Power Co., Ltd. Marketing Service Center gyouf89718@sina.com 
LIU Lu State Grid Liaoning Electric Power Co., Ltd. Marketing Service Center 1205291921@qq.com 
LIU Xinran State Grid Liaoning Electric Power Co., Ltd. Marketing Service Center 475314382@qq.com 
CUI He State Grid Liaoning Electric Power Co., Ltd. Marketing Service Center 5450256381@qq.com 
LI Yunze State Grid Liaoning Electric Power Co., Ltd. Marketing Service Center cnsylyz@sina.com 
Hits: 1337
Download times: 336
中文摘要:
      针对配电网台区中智能电能表误差估计问题,基于粒子群优化BP神经网络提出智能电能表误差估计方法。该方法首先从数据搜集和数据预测预处理建立智能电能表误差估计模型;接着针对传统BP神经网络隐含层节点数制定的局限性,提出采用粒子群优化算法对隐含层节点数进行优化,并采用优化得到的隐含层节点数构建BP神经网络结构对训练样本数据进行训练,基于训练得到的BP神经网络对测试样本数据进行计算得到智能电能表误差数据。针对某地区典型配电网台区中智能电网运行误差估计问题,采用本文所建立的方法进行智能电能表运行误差的评估。仿真算例表明,所建立的模型能够有效评估智能电能表运行误差,并且有效提高了评估准确性,为漏电,窃电的判别提供依据。
英文摘要:
      Aiming at the error estimation of smart meters in the substation area of distribution network, an error estimation method of smart meters was proposed based on particle swarm optimized BP neural network. Firstly, this method established the error estimation model of intelligent electricity meter from data collection and data prediction preprocessing; secondly, aiming at the limitation of the traditional BP neural network hidden layer node number, it proposes to optimize the hidden layer node number by particle swarm optimization algorithm, and constructs the BP neural network structure based on the optimized hidden layer node number to train the training sample data, then the obtained BP neural network calculates the test sample data to get the error data of intelligent meter. Aiming at the problem of smart grid operation error estimation in a typical distribution network area, the method established in this paper is used to evaluate the operation error of smart meters. The simulation example shows that the established model can effectively evaluate the operation error of intelligent watt hour meter, effectively improve the evaluation accuracy, and provide a basis for the discrimination of leakage and theft.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd